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1 Counting Type Classes and Introduction to Shannon En-
tropy

1.1 Counting type classes

Here is a basic setting we will be working with:

• A is a finite alphabet.

• P (A) = {p : A → R : p(a) ≥ 0,
∑

a p(a) = 1} ⊆ RA is the set of probability mass
functions on A.

• ‖p− q‖ =
∑

a |p(a)− q(a)| = 2 supB⊆A |p(B)− q(B)| is the total variation between p
and q.

• If x ∈ An (for n ∈ N), then N(a | x) = |{i = 1, . . . , n : xi = a}| is the number of
occurrences of a in x.

Definition 1.1. The empirical distribution of x is px(a) = N(a|x)
n .

Definition 1.2. Given p ∈ P (A), the type class of p is Tn(p) = {x ∈ An : px = p}.

How big is |Tn(p)|? Here is a basic answer:

|Tn(p)| =

{
n!

(np(a1))!···(np(ak))! np(a) ∈ N ∀a ∈ A
0 otherwise

, A = {a1, . . . , ak}.

We are interested in the exponential asymptotic behavior of |Tn(p)|. Stirling’s approxima-
tion tells us that

n! =
nn

en

√
2πneo(1)

as n→∞ (where eo(1) → 1 as n→∞). We will write this more crudely as

n! =
nn

en
eo(n).

Inserting this into the previous expression gives

|Tn(p)| = (nn/en)eo(n)∏k
i=1((np(ai))np(ai)/enp(ai))eo(n)

=
nn∏

i(np(ai))
np(ai)

/
en∏

i e
np(ai)

=
en logn

exp(
∑

i np(ai) log np(ai))
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= exp

(
n log n−

∑
i

np(ai) log(np(ai))

)

= exp

(
n log n−

∑
i

np(ai) log n− n
∑
i

p(ai) log p(ai)

)
.

In total, we have

|Tn(p)| = e−n
∑
i p(ai) log p(ai)+o(n)

= enH(p)+o(n),

where H(p) = −
∑

a p(a) log p(a). This quantity is called the Shannon entropy of p ∈
P (A).

Later on, high-level real analysis will allow us to make sense of redoing the above
computation in more complicated variants of this problem, where we are not just looking
at the empirical distribution.

Remark 1.1. We regard H as a function P (A)→ R, with the convention that 0 log 0 = 0.

1.2 Basic properties of Shannon entropy

Proposition 1.1. The Shannon entropy H has the following properties:

(a) H is continuous.

Proof. x log x is continuous for x ∈ (0, 1], and x log x→ 0 as x→ 0.

(b) H is strictly concave; i.e. H(tp+ (1− t)q) ≥ tH(p) + (1− t)H(q) with equality only
if either p = q or t ∈ {0, 1}.

Proof. The function x 7→ x log x is strictly concave on [0, 1] (second derivative is < 0).
For strictness, if p 6= q and 0 < t < 1, then there is some a such that p(a) 6= q(a).
Then

−(tp(a) + (1− t)q(a)) log(tp(a) + (1− t)q(a)) > −tp(a) log p(a)− (1− t)q(a) log q(a).

(c) H(p) is symmetric under permutations of A.

(d) 0 ≤ H(p) ≤ log |A|. Equality on the left is achieved iff p = δa for some a ∈ A, and
equality of the right is achieved iff p = (1/|A|, . . . , 1/|A|).
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Proof. −x log x ≥ 0 and is > 0 unless x = 0, 1. So H(p) ≥ 0, and equals 0 only
if p(a) ∈ {0, 1} for all a, i.e. only if p = δb for some b. On the other hand, by
concavity and symmetry (properties (b) and (c)), H must be maximized at p =
(1/|A|, . . . , 1/|A|), and then H = log |A|.

Example 1.1. Look at the image of H of the simplex P ({1, 2, 3}) = {(p1, p2, p3) : pi ≥
0,
∑

i pi = 1}.

Remark 1.2. Suppose X is a random variable taking values in A, and let p(a) = P(X = a)
for a ∈ A. Then H(X) := H(p) is a canonical way to quantify the “uncertainty” in X.

Next time, we will loosen the counting problem to estimate the size of

Tn,δ(p) = {x ∈ An : ‖px − p‖ < δ}.
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2 Counting Empirical Distributions Close to a Given Distri-
bution

2.1 Easier upper bound for the size of a type class

Recall our setting: A is a finite alphabet, and for x ∈ An, px(a) = |{i≤n:xi=a}|
n is the

empirical distribution. The type class is

Tn(p) = {x ∈ An : px = p}.

Last time, we used Stirling’s approximation to show that |Tn(p)| = eH(p)n+o(n), where
H(p) = −

∑
a p(a) log p(a).

Today we will focus on a variant of the question: counting how many empirical dis-
tributions are close to p. We will prove an alternative proof that |Tn(p)| ≤ eH(p)n, the
arguments for which will help us in the later analytic case when there is no exact answer.

Proposition 2.1. |Tn(p)| ≤ eH(p)n.

Proof. Choose X ∈ An at random with iid p coordinates, i.e. the law of x is p×n. Given
x ∈ Tn(p), then

P(X = x) =
n∏
i=1

p(xi)

= exp

(
n∑
i=1

log p(xi)

)

= exp

(∑
a

px(a) · n · log p(a)

)

= exp

(
n
∑
a

p(a) log p(a)

)
= e−H(p)n.

So
1 ≥ P(x ∈ Tn(p)) =

∑
x∈Tn(p)

P(X = x) = |Tn(p)|e−H(p)n.

Remark 2.1. It’s also true that |Tn(p)| ≥ eH(p)n−o(n) if p(a) ∈ N/n for all a.

2.2 Asymptotic analysis of number of empirical distributions close to p

Next, we estimate the size of

Tn,δ(p) = {x ∈ An : ‖px − p‖ < δ}.
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Proposition 2.2. For any ε > 0 and p ∈ P (A), there is a δ0 > 0 such that for all
δ ∈ (0, δ0), we have

eH(p)n−εn−o(n) ≤ |Tn,δ(p)| ≤ eH(p)n+εn+o(n).

Proof. (Upper bound):

Tn,δ(p) =
⋃

‖q−p‖<δ
nq(a)∈N ∀a

Tn(q),

so

|Tn,δ(p)| ≤
∑
q

|Tn(q)| ≤
∑
q

eH(q)n.

H is continuous on P(A), so there exists a δ0 such that ‖q−p‖ < δ0 =⇒ H(q) < H(p)+ε,
and then

|Tn,δ(p)| ≤ eH(p)n+εn|{q ∈ P (A) : ‖q − p‖ < δ, nq(a) ∈ N ∀a}|
≤ (n+ 1)|A|eH(p)n+εn

= eH(p)n+εn+o(n).

(Lower bound): If X ∼ p×n, so

P(X ∈ Tn,δ(p)) = P

(∑
a

|pX(a)− p(a)| < δ

)

= P

(∑
a

∣∣∣∣ |{i : Xi = a}|
n

− p(a)

∣∣∣∣ < δ

)

= P

(∑
a

∣∣∣∣
∑n

i=1 1{Xi=a}

n
− p(a)

∣∣∣∣ < δ

)
.

The 1{Xi=a} are iid Bernoulli random variables with mean p(a), so by the Weak Law of
Large Numbers, this stays < δ/|A| with high probability as n → ∞. So this probability
equals 1− o(1). So we must have∑

x∈Tn,δ(p)

P(X = x)︸ ︷︷ ︸
=e−n

∑
a px(a) log p(a)

= 1− o(1).

Observe that for any ε > 0, there exists a δ such that ‖px−p‖ < δ =⇒
∑

a px(a) log p(a) ≤∑
a p(a) log p(a) + ε. So for this δ, we get

|Tn,δ(p)|e−H(p)n+εn ≥ P(X ∈ Tn,δ(p)) = 1− o(1),

and so |Tn,δ(p)| ≥ eH(p)n−εn−o(n).
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2.3 Superadditivity and convexity arguments for counting type classes
of sets

What we’ve done is specify a ball in the space of empirical distributions and calculated
how many distributions end up in the ball. Here is an approach that does not rely on an
exact answer. Given U ⊆ P (A), let Tn(U) = {x ∈ An : px ∈ U} and Sn(U) := log |Tn(U)|.
Here is a key fact.

Proposition 2.3. If U is convex, then Sn+m(U) ≥ Sn(U) +Sm(U) for all n,m; i.e. S·(U)
is superadditive.

Proof. Suppose x ∈ Tn(U) and y ∈ Tm(U). Then

p(x,y)(a) =
n

n+m
px(a) +

m

n+m
py(a),

so p(x,y) ∈ U by convexity of U . So Tn(U) × Tm(U) ⊆ Tn+m(U). This gives |Tn(U)| ·
|Tm(U)| ≤ |Tn+m(U)|. Now take log.

Lemma 2.1 (Fekete). Suppose an ∈ R for all n is superadditive: an+m ≥ an + am. Then

lim
n

an
n

= sup
n

an
n
∈ (−∞,∞].

Proof. By iterating this condition, an ≥ na1 for all n. Rearrange this to an/n ≥ a1 for all
n. Now suppose that c < supn an/n. We will show that an/n > c for all sufficiently large
n. Choose m such that am/m > c. Now consider n � m such that n = km + p, where
k ≥ 1 and 0 ≤ p < m. Then an ≥ kam + ap, so

an
n
≥ k

km+ p
am +

p

km+ p
a1 =

km

km+ p︸ ︷︷ ︸
n→∞−−−→1

am
m︸︷︷︸
>c

+
p

km+ p︸ ︷︷ ︸
n→∞−−−→0

a1.

Corollary 2.1. If U ⊆ P (A) is convex, then S(U) := limn
1
nSn(U) exists; i.e. |Tn(U)| =

eS(U)n+o(n).

Next, we will derive properties of S.

Lemma 2.2. If U ⊆ V , then S(U) ≤ S(V ).

Here is somewhat of an improvement:

Lemma 2.3. If U ⊆ U1 ∪ · · · ∪ Uk, then S(U) ≤ maxi S(Ui).

10



Proof.

|Tn(U)| ≤
∑
i

|Tn(Ui)| ≤ k ·max
i
|Tn(Ui)|,

so
1

n
Sn(U) ≤ log k

n
+ max

i

1

n
Sn(Ui).

Now let n→∞.

How can a function of convex sets U be like this?

Example 2.1. Let S̃ : P (A)→ R be continuous, and let S(U) = sup{S̃(p) : p ∈ U}. This
example will have the property in the above lemma.

Next time, we will give conditions on S for it to have this form. When we come to the
analytic case, we will be able to repeat this analysis without needing to know the exact
value of S.
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3 Turning Set Functions Into Point Functions

3.1 Recap + dealing with the empty set

Last time, we had a finite alphabet A, and given U ⊆ P (A), we looked at Tn(U) = {x ∈
An : px ∈ U}. We looked at the asymptotic behavior of the size of this set without relying
on explicit formulae. We defined Sn(U) = log |Tn(U)|.

What if Tn(U) = ∅? Here are two answers.

1. If U 6= ∅ is open, if we pick p ∈ U , let n be very large and pick X ∼ p×n. Then
P(pX ∈ U) → 1 as n → ∞ by the Weak Law of Large Numbers. So Tn(U) 6= ∅ for
all sufficiently large n.

2. We should let Sn take the value−∞. This will be fine, as long as we’re not subtracting
negative infinities or multiplying. This is the better answer

Last time, we showed that Sn(U) is superadditive if U is convex:

Sn+m(U) ≥ Sn(U) + Sm(U).

By Fekete’s lemma, S(U) = limn
1
nSn(U) exists and equals supn

1
nSn(U). This tells us that

|Tn(U)| = eS(U)n+o(n).

This produces a set function S : {convex open subsets of P (A)} → [−∞,∞]. We would
like a point function S : P (A)→ [−∞,∞] such that s(U) = sup{S(p) : p ∈ U}.

3.2 General considerations: when do set functions give rise to point
functions?

We will step away for a while to a more abstract setting: Let X be a topological space, let
U be a cover of X by open sets, and let S : U → [−∞,∞]. When is there a point function
S : X → [−∞,∞] such that S(U) = sup{S(x) : x ∈ U}?

The first necessary condition is

(S1) If U,U1, . . . , Uk ∈ U and U ⊆ U1 ∪ · · · ∪ Uk, then S(U) ≤ maxi S(Ui).

Unfortunately, this condition is not sufficient, but we will give a sufficient condition later.
Aside: Call S locally finite if for every x ∈ X, there is some U ∈ U such that x ∈ U

and S(U) <∞.
Now let’s define S(x) := inf{S(U) : U ∈ U , U 3 x}. Then the following is true.

Lemma 3.1.
S(U) ≥ sup{S(x) : x ∈ U}.

Lemma 3.2. The point function S must be upper semicontinuous.

12



Proof. If S(x) < a, then there exists some U ∈ U with x ∈ U and S(U) < a, but then
U ⊆ {S < a}.

Now suppose that K ⊆ X is compact. We want to define S for these types of sets,
rather than just open sets. Define

S(K) := inf{max
i
S(Ui) : U1, . . . , Uk ∈ U ,K ⊆ U1 ∪ · · · ∪ Uk}.

Remark 3.1. If S is locally finite, then S(K) <∞ for all compact K.

Remark 3.2. If K = {x}, then S(K) = S(x).

Lemma 3.3. If U ∈ U and U is compact, then S(U) ≤ S(U).

This is the first moment where we actually use the property (S1).

Proof. If U1 . . . , Uk ⊇ U ⊇ U , then by (S1), S(U) ≤ maxi S(Ui).

Corollary 3.1. If U ∈ U is also compact, then S(U) is unambiguous.

Proof. The previous lemma gives S(U) ≤ S(U) ≤ S(U).

Lemma 3.4. For every compact K 6= ∅, we have

S(K) = sup{S(x) : x ∈ K}.

Proof. If {x} ⊆ K, then
S(x) = S({x}) ≤ S(K).

For the other direction, if supx∈K s(x) = ∞, we are done. So assume that this is < ∞
and let a > supK S(x). Then for any x ∈ K, there is some Vn ∈ U with S(Vn) < a. K is
compact, so there exist x1, . . . , xk with K ⊇ Vx1 ∪ · · · ∪ Vxk , and so

S(K) ≤ max
i
S(Vxi) < a.

Taking the inf over as gives
S(K) ≤ sup

K
S(x).

Here is the second necessary condition on the set function S:

(S2) (“Inner regularity”) S(U) = sup{S(K) : K is compact,K ⊆ U}

Lemma 3.5. If (S1) and (S2) hold, then S(U) = sup{S(x) : x ∈ U}.

Proof. We already know ≥. For the reverse inequality, use (S2): It is enough to show that

sup
K
S(x) = S(K) ≤ sup

U
S(x).

for all compact K ⊆ U . This inequality holds by the previous lemma.
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3.3 The settings we will apply this general theory to

The main settings we care about are:

1. Z is some “nice” topological space (usually a compact metric space), X = M(Z),
the finite signed Borel measures on Z, and U is the collection of convex subsets open
for the weak topology defined by Cb(Z) (i.e. the weak* topology if Z is a compact
metric space).

2. X = Rd and U is the collection of convex open sets.

A suitable intermediate generality for us to cover these two cases will be: X is a locally
convex topological vector space and U is the collection of open convex subsets.

Next time, we will

• find conditions making the point function S concave,

• observe a general “sequence counting” situation where those conditions hold.

14



4 Convexity of Set Functions and Measuring Type Classes

4.1 Recap + addressing superadditivity with −∞

Let’s fix a mistake from last time: If an are extended reals (i.e. ∈ [−∞,∞) or (−∞,∞])
and satisfy an+m ≥ an + am for all n,m, then Fekete’s lemma says that an

n → supm
am
m ∈

(−∞,∞]. However, there can be problems if −∞ is allowed among ans. For example,

an =

{
0 n even

−∞ n odd

does not satisfy the conclusion of Fekete’s lemma. The fix is that we will need to check
separately that an = −∞ for all sufficiently large n.

Last time, we discussed in what situations we can turn set functions into compatible
point functions. In particular, we had a topological space X, an open cover U , and a map
s : U → [−∞,∞] satisfying:

(S1) If U ⊆ U1 ∪ · · · ∪ Uk, then s(U) ≤ maxi s(Ui).

Then
s(x) = inf{s(U) : U ∈ U , U 3 x},

and s is locally finite if s(x) <∞ for all x. If we define

s(K) = inf{max
i
s(Ui) : K ⊆ U1 ∪ · · · ∪ Uk, Ui ∈ U},

then we had a lemma that said

s(K) = sup{s(x) : x ∈ K}.

If we have the additional property

(S2) s(U) = sup{s(K) : K ⊆ U is compact},

then we proved a lemma which says s(U) = sup{s(x) : x ∈ U}.

4.2 Concavity of induced point functions

Now we will specialize to the situation where X is a locally convex topological vector space
over R and U is the collection of open, convex sets. Another lemma from last time tells us
that s : X → R is upper semicontinuous, i.e. for all a ∈ [−∞,∞], {s < a} is open.

Lemma 4.1. Suppose a set function s satisfies

s

(
1

2
U +

1

2
V︸ ︷︷ ︸

={ 1
2
u+ 1

2
v:u∈U,v∈V }

)
≥ 1

2
(s(U) + s(V )) ∀U, V ∈ U

15



and is locally finite. Then the point function s is concave:

s(tx+ (1− t)y) ≥ ts(x) + (1− t)s(y).

Proof. Fix x, y, and let W ∈ U be a neighborhood of w := 1
2x + 1

2y. Then there exist
U, V ∈ U such that U 3 x, V 3 y and 1

2U + 1
2V ⊆W . Therefore,

s(W ) ≥ s
(

1

2
U +

1

2
V

)
≥ 1

2
(s(U) + s(V )) ≥ 1

2
(s(x) + s(y)).

Take the inf over W 3 w to get

s

(
1

2
x+

1

2
y

)
≥ 1

2
(s(x) + s(y)).

Now conclude that
s(tx+ (1− t)y) ≥ ts(x) + (1− t)s(y)

for all dyadic rational t by induction on the dyadic depth of t. For example,

s

(
3

4
x+

1

4
y

)
= s

(
1

2
x+

1

2

(
1

2
x+

1

2
y

))
≥ 1

2
s(x) +

1

2
s

(
1

2
x+

1

2
y

)
≥ 1

2
s(x) +

1

2

(
1

2
s(x) +

1

2
s(y)

)
=

3

4
s(x) +

1

4
s(y).

The general dyadic case is similar.
Finally, we get all t by upper semicontinuity: if tn are dyadic rationals with tn → t,

then
s(tx+ (1− t)y) ≥ lim sup

n
s(tnx+ (1− tn)y).

Now apply the previous case.

4.3 Measuring type classes in this setting

Here is a setting where we can apply these ideas: Let (M,λ) be a σ-finite measure space,
let X,U be as before, and let ϕ : M → X be a measurable map, where

• “measurable” refers to the Borel σ-algebra of X.

• ϕ takes values inside a subset E ⊆ X such that the restriction of the topology of X
to E is separable and metrizable.

16



This second condition is a bit technical. Here are some examples:

Example 4.1. E = X = Rd

Example 4.2. Let Z be a compact metric space, and let X = M(Z) be the collection
of signed finite measures on Z with the weak* topology, so U is the collection of weak*
open convex sets. Then take E = P (Z), the subset of probability measures, which is a
weak*-closed convex subset of M(Z) which is metrizable. In this case, we will usually have
M = Z, λ ∈ P (Z), and ϕ sending z 7→ δz.

Example 4.3. Take the same as above, but Z is any complete, separable metric space,
and M(Z) has the topology generated by all evaluations µ 7→

∫
f dµ for f ∈ Cb(Z). Still

restrict ϕ to take values in P (Z). In this situation, P (Z) still has a complete separable
metric, but this is harder; we won’t prove this carefully here.

Values of interest: For U ∈ U , how does

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

}
︸ ︷︷ ︸

Tn(U)

)

behave? Previously, we had M = A, λ equals counting measure, and ϕ(p) = δp, so
1
n

∑n
i=1 ϕ(pi) was the empirical distribution of p.

Proposition 4.1. There exists some s : U → [−∞,∞] such that

λ×n(Tn(U)) = es(U)n+o(n) ∀U ∈ U .

Proof. Observe that if p ∈ Tn(U) and q ∈ Tm(U) and r = pq is the concatenation, then

1

n+m

n+m∑
i=1

ϕ(ri) =
n

n+m
· 1

n

n∑
i=1

ϕ(pi) +
m

n+m
· 1

m

m∑
i=1

ϕ(qi)

lies in U if 1
n

∑n
i=1 ϕ(pi) ∈ U and 1

m

∑m
i=1 ϕ(pi) ∈ U , i.e. Tn+m(U) ⊇ Tn(U)× Tm(U). So

λ×(n+m)(Tn+m(U)) ≥ λ×n(Tn(U)) · λ×m(Tm(U)).

Take logs to get superadditivity. This gives

s(U) = lim
n

1

n
log λ×n(Tn(U))︸ ︷︷ ︸

an/n

= sup
n

1

n
log λ×n(Tn(U)),

provided that either an = −∞ for all n or an 6= −∞ for all sufficiently large n. We will
complete the proof next time.
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5 Eventual Finiteness of sn(U) and Point Function Condi-
tions

5.1 Recap

From last time, we have a σ-finite measure space (M,λ), a locally convex topological vector
space X, and a measurable map ϕ : M → X. We also let U be the convex open subsets of
X. In this case, the equivalent of type classes is Tn(U) = {p ∈ Mn : 1

n

∑n
i=1 ϕ(pi) ∈ U},

and we may let sn(U) := log λ×n(Tn(U)). We have shown that Tn+m(U) ⊇ Tn(U)×Tm(U),
which implies that sn+m(U) ≥ sn(U)+sm(U) (taking values in [−∞,∞]), and so, by Fekete,

s(U) = lim
n

sn(U)

n
= sup

n

sn(U)

n
,

provided we show that either sn(U) = −∞ or sn(U) > −∞ for all sufficiently large n.

5.2 Eventual finiteness of sn(U)

Lemma 5.1. Either sn(U) = −∞ or sn(U) > −∞ for all sufficiently large n.

Proof. Suppose sm(U) > −∞, i.e. λ×m(Tm(U)) > 0. Then Tkm(U) ⊇ Tm(U)k, so
skm(U) > −∞. We need to control the indices in between.

Step 1: Reduce to the case where U 3 0.1 To do this, let x ∈ U and now consider
ϕ′(m) = ϕ(m) − x. Then U ′ = U − x is a neighborhood of 0, and {p : 1

n

∑n
i=1 ϕ

′(pi) ∈
U ′} = {p : 1

n

∑n
i=1 ϕ(pi) ∈ U}.

Step 2: Since U is convex and U 3 0, tU ⊆ U for all t ∈ [0, 1]. Also, since U is open,
U =

⋃
0≤t<1 t · U =

⋃
r∈N

r
r+1U ; this is because x ∈ U implies there is some r ∈ N such

that r+1
r x ∈ U , i.e. x ∈ r

r+1U . The countable union is for measure theory purposes. So
Tn(U) =

⋃
r Tn( r

r+1U), and so

λ×n(U) = lim
r→∞

λ×n
(
Tn

(
r

r + 1
U

))
.

So there exists some r ∈ N such that

λ×m
(
Tm

(
r

r + 1
U

))
> 0.

Step 3: On the other hand, X =
⋃
q∈N q · U , so for all n, we have λ×n(Tn(q · U)) > 0

for some q.

1This step is not strictly necessary, but it makes our notation easier.
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Step 4: Let n� m with n = km+ ` with ` ∈ {0, . . . ,m− 1}. Suppose p ∈Mn. Then

1

n

n∑
i=1

ϕ(pi) =
1

n

 n∑
i=1

ϕ(pi) +

2m∑
i=m+1

ϕ(pi) + · · ·+
km∑

i=(k−1)m+1

ϕ(pi) +

n∑
i=km+1

ϕ(pi)


=
m

n

 1

m

n∑
i=1

ϕ(pi) +
1

m

2m∑
i=m+1

ϕ(pi) + · · ·+ 1

m

km∑
i=(k−1)m+1

ϕ(pi)


+
`

n
· 1

`

n∑
i=km+1

ϕ(pi)︸ ︷︷ ︸
∗

.

For each of these k terms, we have positive measure for the event that 1
m

∑∗+m
i=∗ ϕ(pi) ∈

r
r+1U . Hence, we have positive measure that 1

k ( 1
m

∑m
i=1 ϕ(pi)+· · ·+ 1

m

∑km
i=(k−1)m+1 ϕ(pi)) ∈

r
r+1U (and we can even replace this by mk

n times this). By step 3, we have positive measure

that ∗ ∈ q · U for some q independent of n and hence `
n · ∗ ∈

q`
n U . If all of these positive

measure events occur, then

1

n

n∑
i=1

ϕ(pi) ∈
r

r + 1
· U +

q`

n
U.

Provided n ≥ q · ` · (r + 1), this implies

1

n

n∑
i=1

ϕ(pi) ∈
r

r + 1
U +

1

r + 1
U = U.

Hence, sn(U) > −∞ for this n.

Remark 5.1. It is also possible that λ×n(Tn(U)) = +∞, so sn(U) = +∞, and we may
get s(U) = +∞. Fekete’s lemma still works, but the result is not meaningful. You usually
want to look for additional reasons of why s is locally finite. The simplest condition is that
if λ(M) <∞, then λ×n(Tn(U)) ≤ λ(M)n for all n.

5.3 Checking conditions to extend s to a point function

Next, we want to switch to point functions s(x) = inf{s(U) : U ∈ U , U 3 x}.

Proposition 5.1. Under the same conditions as before, s is concave.

Proof. Tn+m(U) ⊇ Tn(U) × Tm(U). Similarly, let x ∈ Tn(U) and y ∈ Tm(V ) (where
U, V ∈ U). Then the concatenation z = xy satisfies

1

2n

2n∑
i=1

ϕ(zi) =
1

2

(
1

n

n∑
i=1

ϕ(xi) +
1

n

n∑
i=1

ϕ(yi)

)
∈ 1

2
U +

1

2
V.
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So T2n(1
2U + 1

2V ) ⊇ Tn(U)× Tn(V ), which tells us that

s2n(1
2U + 1

2V )

2n
≥ 1

2

(
sn(U)

n
+
sn(V )

n

)
.

After letting n→∞, we get

s

(
1

2
U +

1

2
V

)
≥ 1

2
(s(U) + s(V )).

By a previous lemma (the argument with dyadic rationals and applying upper semiconti-
nuity), this gives that the point function s(x) is concave.

Next, we quickly check that condition (S1) holds: If U ⊆ U1 ∪ · · · ∪ Uk, then Tn(U) ⊆
Tn(U1) ∪ · · · ∪ Tn(Uk).. Using subadditivity and taking logs, we get

sn(U)

n
≤ logK

n
+ max

i

sn(Ui)

n
,

which gives
s(U) ≤ max

i
s(Ui).

We also need conditions under which we can check (S2): s(U) = sup{s(K) : K ⊆
U,K compact}, where s(K) = inf{maxi s(Ui) : K = U1 ∪ · · · ∪ Uk, Ui ∈ U} = supx∈K s(x)
(by a previous lemma). To deduce (S2) in the setting of generalized type-counting, we
need to assume:

Every open convex set U can be written as a countable union of compact, convex sets.

Example 5.1. In Rd, by intersecting with balls, we can write every U as a countable union
of bounded, open, convex sets, and then we can express each of these as a countable union
of compact convex sets by looking at the set of points under a certain distance from the
boundary.

Example 5.2. If X = Y ∗ with the weak*-topology, this property also holds, but we will
show this later.
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6 Proving the (S2) Condition Via Compact Exhaustion

6.1 Compact exhaustion of convex open sets

Our setting is a σ-finite measure space (M,λ) with a measureable map ϕ : M → X, where
U is the collection of open convex subsets of X. We are trying to measure

λ×n

{
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

}
= exp(n · s(U) + o(n))

(if it is finite for each each n, otherwise we get s(U) =∞ and RHS =∞). This exceptional
case is not an issue if we can guarantee at most exponential growth, e.g. if λ(M) <∞.

We can also define a point function

s(x) = inf
U3x

s(U),

and this is upper semicontinuous and concave. The next step needs an extra condition:

Each U ∈ U is a countable union of compact convex sets.

Here are examples where we can prove this property.

Example 6.1. X = Rd. Let U be convex and open, and let Fn = {x ∈ U : |x| ≤
n,dist(x, U c) ≥ 1/n}. This is a closed subset of U (which is bounded and hence compact),
and U =

⋃
n Fn. To show that this is convex, we need to make sure the last condition

preserves convexity. Observe that this condition holds iff B1/n(x) ⊆ U . If this holds at x
and y, then

B1/n(tx+ (1− t)y) = tB1/n(x) + (1− t)B1/n(y) ⊆ U.

Example 6.2. X = Y ∗, where Y is a Banach space and X has the weak*-topology.

To prove the second example, we need the following:

Lemma 6.1. For X = Y ∗, if U ∈ U , then there exist y1, . . . , yk and an open, convex
V ⊆ Rk such that

U = {x : (〈x, y1〉, . . . , 〈x, yk〉) ∈ V }

i.e. U = L−1[V ], where L : X → Rk sends x 7→ (〈x, y1〉, . . . , 〈x, yk〉).

Proof. Assume U 3 0, so there exist linearly independent y1, . . . , yk ∈ Y and a neighbor-
hood W of 0 in Rk such that U ⊇ L−1[W ] (L as above). The main work is showing that
U = L−1[V ] for some V ⊆ Rk. It is equivalent to show that U = U + z for any z ∈ kerL.

Suppose z ∈ kerL ⊆ U and so 1
εz ∈ U for all ε. We have, by convexity, that U ⊇ (1−ε)U

for all ε ∈ [0, 1]. Similarly, U ⊇ (1− ε)U + εu, where u ∈ U . So, in particular,

U ⊇ (1− ε)U + ε · 1

ε
z = (1− ε)U + z
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for all ε. Hence,

U ⊇
⋃

1>ε>0

(1− ε)U + z = U + z.

By symmetry, U = U + z.

Proposition 6.1. X = Y ∗ has the desired property.

Proof. Let U = L−1[V ] =
⋃
n L
−1[Fn] as above, where L−1[Fn] are weak* closed and

convex. By Alaoglu’s theorem, X =
⋃
nBn, where Bn is compact and convex, and so

U =
⋃
n(L−1[Fn] ∩Bn).

6.2 Compact exhaustion implies (S2) condition

Proposition 6.2. Suppose that X and U have this property. Then the (S2) condition

s(U) = sup{s(K) : K ⊆ U is compact}

holds, where

s(K) := inf{max
i
s(Ui) : U1, . . . , Uk ∈ U ,K ⊆ U1 ∪ · · · ∪ Uk}.

Proof. Recall that if s(U) > −∞, then

s(U) = lim
n

log λ×n({ 1
n

∑n
i=1 ϕ(pi) ∈ U})
n

= sup
n

log λ×n({ 1
n

∑n
i=1 ϕ(pi) ∈ U})
n

.

Suppose a < s(U). Then by this latter formulation for s(U), there is some m such that
log(λ×m({· · · ∈ U}))/m > a. Write U =

⋃
k Fk where the Fk are compact and convex.

So λ×m({· · · ∈ U}) =↑ limk λ
×m({· · · ∈ Fk}). So there is a compact convex F ⊇ U with

log λ×m(···∈F})
m > a. By convexity of F , this gives

log λ×`m({ 1
`m

∑`m
i=1 · · · ∈ F})

`m
> a

for all `. Now suppose F ⊆ U1 ∪ · · · ∪ Uk with the Ui ∈ U . Then λ×`m({· · · ∈ F}) ≤
kmaxi λ

×`m({· · · ∈ Ui}). So

log λ×`m({· · · ∈ F})
`m

≤ o(1) + max
i

log λ`m({· · · ∈ Ui})
`m︸ ︷︷ ︸
→s(Ui)

.

The lim sup of this as `→∞ is a lower bound on maxi s(Ui) whenever F ⊆ U1 ∪ · · · ∪ Uk.
Hence, s(F ) ≥ a. Since a was arbitrary < s(U), we have (S2).
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6.3 Special cases of our construction

Let’s take stock of what we have so far: There exists s : U → [−∞,∞] satisfying (S1) and
(S2) such that

λ×n

(
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

)
= exp(n · s(U) + o(n))

as n → ∞ for all U ∈ U . We also have an upper semicontinuous point function s : X →
[−∞,∞] with s(U) = sup{s(x) : x ∈ U}. Also, if s : U → [−∞,∞] is locally finite, then
s : X → [−∞,∞) and is concave.

Here are a few notable special cases:

Example 6.3. Let M = A be a finite alphabet with λ as counting measure. Then s(U) ≤
log |A| for all U , and ϕ(a) = δa ∈ P (A). Then 1

n

∑n
i=1 ϕ(ai) is the empirical distribution

pa, and so our conclusion is

|Tn(U)| = exp(n sup
p∈U

s(p) + o(n)).

Example 6.4. Let X = Rd, and let ξ1, ξ2, . . . be iid random variables with values in Rd.
So in the background, there is a probability space (M,λ) and measurable ϕ : M → Rd

such that (ξ1, ξ2, . . . )
d
= (ϕ(p1), ϕ(p2), . . . ), where (p1, p2, . . . ) ∼ λ×∞. Then there exists a

point function s : Rd → [−∞, 0] such that

P

(
1

n

n∑
i=1

ξi ∈ U

)
= exp

(
n · sup

x∈U
s(x) + o(n)

)
.

(Note that s(x) ≤ 0 for all x because s(U) ≤ log λ(M) = 0 for all U .) If this event is
unlikely (prob → 0 as n→∞), then the event is called a large deviation, and this is the
beginning of “Large Deviations Theory.”
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7 Large Deviations and Affine Approximation of Semicon-
tinuous Functions

7.1 Recap

Here is our main result so far: We have a σ-finite measure space (M,λ) and a locally
convex topological vector space, and U as the collection of open convex sets on X. We
assume that every U ∈ U is an increasing union of compact, convex sets (e.g. Rd, Y ∗). We
also have a measurable map ϕ : M → X which takes values in a metrizable subset. Then

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

})
= en·s(U)+o(n)

for U ∈ U . And if s : U → [−∞,∞] (6= +∞ if s is locally finite), then there exists
a point function s : X → [−∞,∞) which is upper semicontinuous and concave with
s(U) = sup{s(x) : x ∈ U}.

Example 7.1. In our original counting of type classes, we had M = A is a finite alphabet,
λ is counting measure, p(a) = δa, and 1

n

∑n
i=1 ϕ(ai) = pa is the empirical distribution.

Example 7.2. In Large Deviations Theory, (M,λ) is a probability space, and X = R.
Then ξ1 = ϕ(p1), ξ2 = ϕ(p2), . . . are iid random variables. Then the theorem says

P

(
1

n

n∑
i=1

ξi ∈ U

)
= exp

(
n · sup

U
s(x) + o(n)

)
.

Here, s ≤ 0 always.

7.2 The large deviations principle

How does this fit into probability theory? Suppose E[|ξi|] < ∞ (iff ϕ ∈ L1(λ)). Then the
Weak Law of Large Numbers says

P

(
1

n

n∑
i=1

ξi ∈ U

)
→

{
1 E[ξi] ∈ U
0 E[ξi] /∈ U.

In the case where supU s < 0, this gives an exponential decay, upgrading the result of the
Weak Law of Large Numbers. We can see Large Deviations Theory as a refinement of the
convergence to zero in the WLLN.

The most “standard” formulation of the large deviations principle says

•

P

(
1

n

n∑
i=1

ξi ∈ U

)
≥ exp

(
n · sup

x∈U
s(x) + o(n)

)
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for all open U ⊆ R. [This follows from the observation that LHS ≥ P( 1
n

∑n
i=1 ξi ∈ I)

for all open intervals I ⊆ U .]

•

P

(
1

n

n∑
i=1

ξi ∈ C

)
≤ exp

(
n · sup

C
s(x) + o(n)

)
for all closed C ⊆ R. [This follows from above if C is compact: if supC s(x) = α, then
we can cover C with finitely many open intervals I1, . . . , Ik such that P( 1

n

∑n
i=1 ξi ∈

I`) ≤ en·supI`
s+o(n) for all ` ≤ k. We can extend this to closed sets if s(x)→ −∞ as

x→ ±∞, in which case s is called good.2 If s is good, we can cover a general closed
set with far away half infinite intervals on each side and have a compact set in the
middle. The apply the previous argument.]

7.3 Approximation of concave, upper semicontinuous functions by affine
functions

Returning to the general story, assuming local finiteness, s : X → [−∞,∞) is upper semi-
continuous and concave. How can we describe these in general? Here are some examples
where X = R:

Example 7.3. s(x) = c− x2

2This is also called proper in analysis.
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Example 7.4. s(x) ∼ −|x| as x→ ±∞.

Example 7.5. Upper semicontinuous example with

s(x) =

{
c− x2 |x| ≤M
−∞ |x| > M.

Example 7.6. An example that tends to −∞ on the right:
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Example 7.7. An example which tends to +∞ on the right:

The key to all these cases is whether we can draw a straight tangent line that lies
entirely above the graph. In example 3, we run into a bit of trouble at the endpoints, since
we cannot draw vertical line (with infinite slope), so we may need an ε bit of wiggle room.
What this idea leads to is the fact that any upper semicontinuous function can be written
as an infimum of affine functions. Here is a lemma that we need.

Lemma 7.1. Let X be a locally convex topological vector space, and let s : X → [−∞,∞)
be an upper semicontinuous concave function with x ∈ X. If t > s(x), then there exists a
c ∈ R and a continuous functional y on X such that

• c+ 〈y, z〉 ≥ s(z) for all z ∈ X,

• c+ 〈y, x〉 < t.

This is the infinite dimensional analogue of whether we can place a line above the graph
of s(x) which stays below any point above the graph.

Proof.

We want to think of this as a picture in a larger topological vector space that includes the
vertical coordinate. Let X̃ = X × R, which is a locally convex topological vector space
with the product topology. The point (x, t) lies above the subset C := {(x, θ) : θ ≤ s(z)}.
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This subset is closed because s is upper semicontinuous and is convex because s is concave.
By the Hahn-Banach separation theorem, there exists a ỹ ∈ X̃∗ such that ỹ(x, t) > supC ỹ.
Also, ỹ can be written as ỹ(z, θ) + 〈y, z〉 + αθ for some y ∈ X∗ and α ∈ R. If we let
c be the y-intercept of the hyperplane given by Hahn-Banach and rewrite the inequality
ỹ(x, t) > supC ỹ in terms of c, we get the result.

Proposition 7.1. A function s : X → [−∞,∞) is upper semicontinuous and concave if
and only if

s(x) = inf{c+ 〈y, x〉 : c ∈ R, y ∈ X∗, c+ 〈y, z〉 ≥ s(z) ∀z ∈ X}.

7.4 The Fenchel-Legendre transform

How can we give a canonical family in here? For fixed y ∈ X∗, what is the best c to use?
We want c+ 〈y, z〉 ≥ s(z) for all z. That is, we want c ≥ s(z)− 〈y, z〉, so we want to take

c = sup
z∈X

s(z)− 〈y, z〉 =: s∗(y).

This is known as the Fenchel-Legendre transform of s. Here are some properties of s∗:

Proposition 7.2.

1. s∗ is lower semicontinuous and convex.

Proof. s∗ is the supremum of lower semicontinuous, convex (affine) functions.

2. Provided s 6≡ −∞, we get s∗ : X∗ → (−∞,∞] and s∗ is not always +∞.

3. s(z) = infy s
∗(y)− 〈y, z〉. That is, s = (s∗)∗.
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8 Integral Formula for the Fenchel-Legendre Transform

8.1 The Fenchel-Legendre transform and the integral formula

Last time, we defined the Fenchel-Legendre transform s∗ = supx s(x) + 〈y, x〉, which
is convex, lower semicontinuous, is s∗ : X∗ → (−∞,∞], and is not always +∞.3 We also
saw that s = (s∗)∗, so we can recover s from its Fenchel-Legendre transform.

Let’s focus on the X = Y ∗ case, since this also subsumes the X = Rk case. Also assume
λ 6= 0.

Theorem 8.1. In this generalized type counting problem for X = Y ∗,

s∗(y) = log

∫
e〈y,ϕ〉 dλ

for y ∈ Y .

Before proving this, observe:

exp(s∗(ty + (1− t)w)) =

∫
et〈y,ϕ〉+(1−t)〈w,ϕ〉 dλ

=

∫
et〈y,ϕ〉 · e(1−t)〈w,ϕ〉 dλ

Using Hölder’s inequality,

≤
(∫

e〈y,ϕ〉 dλ

)t(∫
e〈w,ϕ〉 dλ

)1−t
,

so taking logs gives that this expression is convex. We can also check that this expression
is lower semicontinuous.

8.2 Proofs of the upper bound and the lower bound

Proof. (≤): Since s∗(y) = supx s(x) + 〈y, x〉, we need to show that

s(x) + 〈y, x〉 ≤ log

∫
e〈y,ϕ〉 dλ

for all x. Let ε > 0, and consider U = {x′ : 〈y, x′〉 > 〈y, x〉 − ε}. We know that

sn·(s(x)+〈y,x〉) ≤ en(s(U)+〈y,x〉)

= eo(n)en〈y,x〉λ×n

({
p :

1

n

n∑
i=1

ϕ(pi) ∈ U

})
3Many authors study s̃ = −s throughout and then get s∗(y) = supx〈y, x〉− s̃(x) and s̃(z) = supy〈y, z〉−

s∗(y). We use a different convention.
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= eo(n)en〈y,x〉λ×n

({
p :

n∑
i=1

〈y, ϕ(pi)〉 > n〈y, x〉 − nε

})
Exponentiate both sides in the inequality and apply Markov’s inequality:4

≤ eo(n)en〈y,x〉enε−n〈y,x〉
∫
e
∑n
i=1〈y,ϕ(pi)〉 dλ×n

= eo(n)+nε

∫
Mn

n∏
i=1

e〈y,ϕ(pi)〉 dλn

= eo(n)eεn
(∫

e〈y,ϕ〉 dλ

)n
,

so

n(s(U) + 〈y, x〉) ≤ o(n) + εn+ n log

∫
e〈y,ϕ〉 dλ.

Divide by n and send n→∞ to get

s(x) + 〈y, x〉 ≤ s(U) + 〈y, x〉 ≤ ε+ log

∫
e〈y,ϕ〉 dλ.

Since ε is arbitrary, we get (≤).
To get the lower bound, let’s look at the proof of the upper bound and try to make it

as tight as possible. The first inequality is close if U is a small enough neighborhood of x.
In the Chernoff bound, we want to see when this is close to equality. To prove (≥), we will
look at the Chernoff bound step; here’s the idea: Consider

en〈y,x〉λ×n

({
p :

1

n

n∑
i=1

〈y, ϕ(pi)〉 ∈ U

})
,

where we want to make U small enough around x to force this to be ≈ 〈y, x〉. We then get

en〈y,x〉λ×n

({
p : exp

n∑
i=1

〈y, ϕ(pi)〉 ≈ en〈y,x〉,
1

n

n∑
i=1

ϕ(pi) ∈ U

})
.

This is

≈ e±εn
∫
{ 1
n

∑n
i=1 ϕ(pi)∈U}

e
∑n
i=1〈y,ϕ(pi)〉 dλ×n ≤ eεn

∫
Mn

e
∑n
i=1〈y,ϕ(pi)〉 dλ×n.

So the question becomes: Can we find an x where most of the mass lies in the set
{ 1
n

∑n
i=1 ϕ(pi) ∈ U}?

Now let’s prove (≥) carefully. First assume two conditions:

4This is sometimes called a Chernoff bound.
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1. Z =
∫
e〈y,ϕ〉 dλ <∞.

2. p takes values in a compact subset K of X.

In this case, we can define a new probability measure on M by

dθ(p) =
1

Z
e〈y,ϕ(p)〉 dλ(p)

(using assumption 1). Now, for any A ⊆Mn,∫
A
e
∑n
i=1〈y,ϕ(pi)〉 dλ×n = Znθ×n(A).

With A = { 1
n

∑n
i=1 ϕ(pi) ∈ U}, we get

Znθ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})
This suggests we can use the Weak Law of Large Numbers for θ and ϕ.5 To do this carefully,
we need assumption 2: p takes values in K ⊆ X, so it has a barycenter with respect to θ:
a unique x ∈ K such that ∫

〈y, ϕ〉 dθ = 〈y, x〉 ∀y ∈ Y.

And now a vector-valued Weak Law of Large Numbers holds: for this x and any weak*
neighborhood U 3 x, we get

θ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})
= 1− o(1)

as n→∞. As a result, for any weak* neighborhood of this x, we now get∫
{ 1
n

∑n
i=1 ϕ(pi)∈U}

= Znθ×n

({
1

n

n∑
i=1

ϕ(pi) ∈ U

})
≥ Zneo(n).

Insert this to reverse the previous upper bound proof to get an x such that s(x) + 〈y, x〉 ≥
logZ − ε. This gives s∗(y) = logZ.

To remove assumptions 1 and 2, recall that (M,λ) is σ-finite and X =
⋃
nKn, so for

any a <
∫
e〈y,ϕ〉 dλ, there exists a measurable A ⊆M such that ∞ >

∫
A e
〈y,ϕ〉 dλ > a, and

ϕ(A) takes values in some Kn. Now run the previous argument with dλ′(p) = 1A(p) dλ(p)
to get that for every ε, there is an x such that s(x)+〈y, x〉 ≥ log a−ε. Since a <

∫
e〈y,ϕ〉 dλ

was arbitrary, we get

s∗(y) = log

∫
e〈y,ϕ〉 dλ,

even if this is +∞.

5This is the key idea of the lower bound proof. It is called the change of measure idea.
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9 Cramér’s Theorem and Recovering Entropy as the Expo-
nent

9.1 Cramér’s theorem

We have a σ-finite measure space (M,λ), and a measurable map ϕ : M → X, where
X = Y ∗ is a locally convex space with the weak* topology. We found that

λ×n

({
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

})
= en·s(U)+o(n),

where s(U) = supx∈U s(x) for some point function s which is upper semicontinuous and
concave. To study s, we have introduced Fenchel-Legendre duality:

s(x) = inf
y
s∗(y)− 〈y, x〉,

where
s∗(y) := sup

x
s(x) + 〈y, x〉

is sometimes known as the convex conjugate of s. Last time, we proved a formula: if
s(x) <∞ for all n, then

s∗(y) = log

∫
e〈y,ϕ〉 dλ.

Remark 9.1. In the proof of this integral formula, to show (≤), we showed that s(x) +
〈y, x〉 ≤ RHS for all x, y. For this, given ε > 0, we found U 3 x such that

λ×n({· · · ∈ U}) ≤ eεn+o(n)

(∫
e〈y,ϕ〉 dλ

)n
.

This part of the proof does not require that s is finite. In fact, it gives a way to prove
s(U) <∞ and hence s(x) <∞. So if there is some y ∈ Y such that

∫
e〈y,ϕ〉 dλ <∞, then

s < ∞ and s∗ is as in the theorem. The mantra is that s < ∞ everywhere iff s∗ < ∞
somewhere.

A special case is when (M,λ) is a probability space and X = Rd. In this case, we get
the following version of the theorem we proved before:

Theorem 9.1 (Cramér, 1937). Let ξ1, ξ2, . . . are i.i.d. random vectors in Rd. Then

P

(
1

n

n∑
i=1

ξ ∈ U

)
= exp

(
n · sup

x∈U
s(x) + o(n)

)
,

where
s(x) = inf

y∈Rd
Λ(y)− 〈y, x〉,
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and
Λ(y) = logM(y) = logE[e〈y,ξ1〉]

is the cumulant generating function.

In a number of texts, our s is denoted by −I (so the inf becomes a sup, etc.).

9.2 Connection to the Kullback-Leibler divergence in the case of empir-
ical distributions

Let K be a compact metric space, λ be a finite Borel measure, X = M(K) be the space
of measures on K (equal to C(K)∗ by Riesz representation), and ϕ(p) = δp. In this case,
1
n

∑n
i=1 ϕ(pi) is the empirical distribution of (p1, . . . , pn).

Theorem 9.2. In this setting, s(µ) = −∞ unless µ ∈ P (K) and µ� λ, and in that case,

s(µ) = −
∫
dµ

dλ
log

dµ

dλ
dλ.

We will denote the right hand side by s̃(µ) until we have proven the theorem; that way,
the proof is to show that s = s̃.

Remark 9.2. Note that

s̃(µ) =

∫
η

(
dµ

dλ

)
dη, η(t) =

{
−t log t t > 0

0 t = 0.

If |η(dµdλ )| ∈ L1(λ), then s̃(µ) > −∞. Otherwise, we set s(µ) := −∞.

Remark 9.3. Here is an alternative formula that will be useful:

s̃(µ) = −
∫

log
dµ

dλ
dµ.

This formula is useful, but it is a little harder to see the natural −∞ convention with this
version.

Here are 2 special cases:

Example 9.1. Let K be finite with λ being counting measure. Then dµ
dλ (a) = µ({a}), and

so
s̃(µ) = −

∑
a

µ({a}) logµ({a}) = H(µ)

is the Shannon entropy.
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Example 9.2. If λ(K) = 1, then

−s̃(µ) =

{∫ dµ
dλ log dµ

dλ dλ

+∞ in the cases described above

is called the Kullback-Leibler divergence. The standard notation for this is D(µ‖λ).

Lemma 9.1. If λ(K) = 1, then D(µ‖λ) ≥ 0, with equality if µ = λ.

Proof.

D(µ‖λ) =

∫
dµ

dλ
log

dµ

dλ

=

∫
−η
(
dµ

dλ

)
dλ

−η is strictly concave, so using Jensen’s inequality gives

− η
(∫

dµ

dλ
dλ

)
= −η(1)

= 1 log 1

= 0.

We get equality iff dµ
dλ is constant for λ-a.e., that is, iff µ = λ.

Let’s prove the theorem:

Proof. We want to prove that s = s̃. Using the expresion for s in terms of the Fenchel-
Legendre transform and using the integral formula, we want to show that

inf

{
log

∫
ef(p) dλ(p)− 〈f, µ〉 : f ∈ C(K)

}
= s̃(µ).

This is known as Gibbs’ variational formula.
(≥): We want

log

∫
ef dλ− 〈f, µ〉 ≥ −

∫
dµ

dλ
log

dµ

dλ
dλ.

The key object is

dµf (p) =
ef(p)

Z(f)
dλ(p), Z(f) =

∫
ef dλ,

which is sometimes called the Gibbs measure of f with respect to λ. Observe that

λ� µf and µf � λ, so if µ� λ, then µ� µf , then dµ
dλ = dµ

dµf

dµf
dλ , and so

s̃(µ) = −
∫

log
dµ

dλ
dµ
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= −
∫

log
dµ

dµf
dµ−

∫
log

dµf
dλ

dµ

= −D(µ‖µf )−
∫

(f − logZ) dµ

= −D(µ‖µf ) + {logZ − 〈f, µ〉} .

Rearrange this to get

logZ − 〈f, µ〉 = s̃(µ) +D(µ‖µf ) ≥ s̃(µ),

with equality iff µ = µf .
(≤): We already know this if µ = µf for some f ∈ C(K). The summary of the rest of

the proof is “such measures µf are dense as f varies.” In more detail:

(a) inf{log
∫
ef dλ− 〈f, µ〉 : f ∈ C(K)} has the same value if we enlarge C(K) to B(K),

the bounded Borel functions. This is because given λ and µ, C(K) is dense in
L1(λ+ µ), so for all g ∈ B(K) (all uniformly bounded), there is some (fn)n in C(K)
with fn → g in L1(λ) and L1(µ). Then 〈fn, µ〉 → 〈g, µ〉, and

∫
efn dλ→

∫
eg dλ.

(b) Now suppose ���
�µ� λ. Then there is an A such that λ(A) = 0 and µ(A) > 0. Let

g = c1A ∈ B(K). This gives

log

∫
eg dλ− 〈g, µ〉 = 0− cµ(A)→ −∞

as c→ +∞. So inf{· · · } = −∞, as required.

(c) Lastly, suppose dµ = ρ dλ. If ρ = eg with g ∈ B(K), we are done by the previoius
calculation. Otherwise, choose (gn)n in B(K) such that

egn → ρ

{
from below if ρ > 1

from above if ρ ≤ 1.

Now show that:

•
log

∫
{ρ≤1}

egn dλ→ log

∫
ρ dλ = log 1 = 0,

•
log

∫
{ρ>1}

egn dλ→ log

∫
ρ dλ = log 1 = 0,

•
〈gn, µ〉 → 〈log ρ, µ〉 = s̃(µ).
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10 Introduction to Statistical Physics

10.1 Recap

Last time, we mentioned that in the case X = M(K), λ is finite on K, and ϕ : K → X
sends p 7→ δp for a compact metric space K, we get

s(µ) =

{
−
∫ dµ
dλ log dµ

dλ dλ µ ∈ P, µ� λ

−∞ else.

For example, if K = A is finite and λ ∈ P (A), we get

λ×n({a ∈ An : pa ≈ µ}) = e−nD(µ‖λ)+o(n),

where

D(µ‖λ) :=
∑
a

µ(a)

λ(a)
log

µ(a)

λ(a)
.

10.2 Quick intro to statistical physics

Imagine n point particles located in space with positions ri(t) for 1 ≤ i ≤ n. The laws of
motion give

d2ri(t)

dt2
=

1

mi
Fi,

where the Fi are forces. A typical simple example of forces is

Fi = −∇V (ri(t))

for some potential energy V : R3 → R.
How big is n? Avogadro’s number, ≈ 6× 1023, is roughly the number of Carbon atoms

in the graphite in a pack of pencils. This tells us that the number of particles is way too
large to be solved in the usual way. The founding ansatz in statistical physics is that in
a macroscopic physical system, once a few key quantities are fixed, “almost” all possible
microscopic states of the system look macroscopically the same.

In an example of classical particles, the total energy is conserved:6

Φ(ri, pi) =
n∑
i=1

V (ri)︸ ︷︷ ︸
potential energy

+
n∑
i=1

1

2mi
|pi|2︸ ︷︷ ︸

kinetic energy

,

where pi = mi
dri
dt is the momentum of a particle, and mi is the mass.

6In practice, you can’t directly measure or control the amount of total energy in a system. You have to
control factors that would affect the energy in the system, such as temperature and pressure.
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The phase space is (R3)n × (R3)n, which keeps track of the position and momentum
of every particle. The micro-state moves around in the level set

Ω(E) = {(r1, . . . , rn, p1, . . . , pn) : Φ(ri, pi) = E}

if the system is isolated, i.e. no energy exchange occurs with the surroundings.
We want to restrict to cases where these sets are bounded, which we can do if we

impose a restriction on the set of potential energies (for example, if the particles oc-
cupy a potential well). Any other macroscopic observable quantity will be a function
of (r1, . . . , rn, p1, . . . , pn). We want the functions that arise this way to stay close to some
constant value on most of Ω(E). By “most,” we mean most in the sense of the measure on
Ω(E); instead of using 6n− 1 dimensional Hausdorff measure on Ω(E) (which is a 6n− 1
dimensional manifold), it is easier in practice to thicken the manifold (loosen the restriction
on the exact energy E) and use 6n dimensional Lebesgue measure.

In the previous formula for the energy, these particles are not interacting. This is
the easiest case where we can solve things explicitly. In reality, molecules have pairwise
interactions, so we could include a term like

∑
i,j Vi,j(ri, rj). We will first deal with the

noninteracting particles case, and once we have developed the tools to talk about these
things, we will then deal with systems with interactions.

We call these observables concentrated (probability terminology) or self-averaging
(physics terminology).
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11 Mathematical Setup for Statistical Mechanics

11.1 Relationship to type counting

Our goal is to set up some mathematical models of physical systems with large numbers
of degrees of freedom and see whether “most microstates look the same” after fixing a few
macroscopic parameters.

To begin with, we will focus on n classical7 non-interacting, identical point particles
moving around in a potential. Non-interacting particles can be thought of as particles
where the energies of interaction are negligible compared to the total energy of the system.

We will describe the particles via their positions r1, . . . , rn ∈ R3 and velocities v1, . . . , vn ∈
R3. Newton’s law says

m
dvi
dt

= m
d2ri
dt

= Fi = −∇V (ri).

We will assume the mass m equals 1, so vi = pi, the momentum. The total energy is

Φ(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕ(ri, pi), ϕ(ri, pi) = v(ri) +
1

2
|pi|2.

We want to study averages over the set

Ω(n, I) = {(r1, . . . , pn) ∈ (R3)n × (R3)n :
1

n
Φ(r1, . . . , pn) ∈ I = (E − ε, E + ε)}

for some desired total energy E and error tolerance ε.
The first step is to ask: How big is Ω(n, I) in the sense of Lebesgue measure? This is just

an instance of generalized type counting: M = R3×R3, λ = m3×m3, and ϕ : M → [0,∞).
Note that we are assuming V is lower bounded, and we are adjusting it by a constant to
assume its minimum equals 0. Now the asymptotic behavior of

λ×n
({

(r1, . . . , pn) :
1

n
Φ ∈ I

})
= exp

(
n · sup

E∈I
s(E) + o(n)

)
.

To go further, we need to know more about s in the present situation.8

11.2 Assumptions of the model and properties of the entropy

Here are the salient features of the present situation and a necessary assumption:

• (M,λ) is σ-finite but not finite.

7Here, classical means not quantum. You can do this with quantum physics, but it requires making use
of the full machinery of Hilbert spaces.

8In this situation, s is 1
n

times the Boltzman entropy.
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• minϕ = 0 = ess minϕ, i.e. λ({(r, p) : ϕ(r, p) < a}) > 0 for all a > 0.

• We need V to confine particles strongly enough to bounded regions of space. Math-
ematically, we will ask that

∫
e−βϕ dλ < ∞ for all β > 0. [Note that

∫
e−βϕ dλ =∫∫

R3×R3 e
−βV e−(β/2)|p|2 dm3(r) dm3(p).]9

Under these assumptions, we know that s(E) exists, is upper semicontinuous, concave,
and is s : R→ [−∞,∞). In fact, we also know that s ≡ −∞ on [−∞, 0), so we can focus
on s|[0,∞). In this case, we have our variational formula

s(E) = inf
β
{s∗(β) + βE},

where

s∗(β) = log

∫
e−βϕ dλ.

Note that we have switched y with −β, as β has a physical interpretation.
We will use the formula for s∗ to derive more qualitative features of s. We will set up

ways of translating properties of s∗ into those of s. Here is a picture of s and s∗:

For each E, is there a β which achieves the equality s(E) = s∗(β) + βE? The answer
is yes, if and only if s has finite one-sided derivative on at least one side, and then you can
use any D+s(E) ≤ β ≤ D−s(E). In particular, if s′(E) exists, then the unique choice is
β = s′(E).

9Notably, gravity does not satisfy this assumption, but gravity operates on different scales than we are
working with, so we will ignore it.
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12 Duality: Deriving Properties of s Via Properties of s∗

12.1 Recap

Our setup from last time is a system of n “non-interacting particles.” M is the phase
space R3 × R3, λ = m3 ×m3 is a σ-finite but not finite measure, and ϕ : M → [0,∞) is
ϕ(r, p) = ϕpot(r) + 1

2 |p|
2 (potential energy + kinetic energy). We will assume ϕ is lower

bounded and normalize ϕ so that minϕ = ess minϕ = 0. Then, for open interval I ⊆ R,

λ×n

({
(r1, . . . , rn, p1, . . . , pn) :

1

n
Φn(r1, . . . , pn) :=

1

n

n∑
i=1

ϕ(ri, pi) ∈ I

})

= exp

(
n · sup

E∈I
s(E) + o(n)

)
The intuition is that

λ×n
({

1

n
Φn ≈ E

})
≈ en·s(E)+o(n).

We also have that
s(E) = inf

β∈R
{s∗(β) + βE},

s∗(β) = sup
E≥0
{s(E)− βE} = log

∫
e−βϕ dλ,

which is assumed to be < ∞ for all β > 0. Next, we need to understand where these inf
and sup are achieved.

12.2 Supporting tangents and conjugacy between β and E

Definition 12.1. A supporting tangent to s at E is a line touching the graph of s at
E and bounding from above.
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Its slope β must satisfy

s(E′) ≤ s(E) + β(E′ − E) ∀E′.

Equivalently,
D+s(E) ≤ β ≤ D−s(E)

or
s(E) = s∗(β) + βE.

Up to a sign, this last equation is symmetric between “conjugate variables” β and E:

s(E) + (−s∗(β)) = βE.

Here, s and (−s∗) are both upper semicontinuous, and they play the same role in this
equation. So, by symmetry, β is a slope for a supporting tangent line to s at E iff E is a
slope for a supporting tangent line to −s∗ at β. That is,

D+s(E) ≤ β ≤ D−s(E) ⇐⇒ D−s
∗(β) ≤ −E ≤ D+s

∗(β).

This is the key observation for deriving smoothness and differentiability properties of s
from those of s∗.

12.3 Leveraging conjugacy to prove differntiability and strict convexity
of s

Here is our picture relating s and s∗:
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Here are some main features to be proved about this picture:

Proposition 12.1.

s(E)→

{
∞ as E →∞
log λ({ϕ = 0}) as E ↓ 0.

The first case implies s is strictly increasing. Also, it could be in this picture (if
λ({ϕ = 0}) = 0) that the graph gets steeper and steeper and never hits the vertical axis.

Proof. First, we have

s(E) = inf
β>0

{
log

∫
e−βϕ dλ︸ ︷︷ ︸

s∗(β)

+βE

}
.

First, here are some properties of s∗:

s∗(β)→

{
log λ({ϕ = 0}) as β →∞
∞ as β ↓ 0.

The first of these follows since ϕ ≥ 0, β1 > β2 > 0 implies e−β1ϕ ≤ e−β2ϕ. As β →
∞, e−βϕ ↓ 1{ϕ=0}. By the dominated convergence theorem, s∗(β) → log

∫
1{ϕ=0} dλ =

log λ{ϕ = 0}.
Secondly, we have λ({ϕ ≤ M}) → ∞ as M → ∞, so for all K > 0, pick M so that

λ({ϕ ≤M}) ≥ K. Now pick β so small that e−βM ≥ 1/2, so now

s∗(β) = log

∫
e−βϕ dλ

= log

∫
{ϕ≤M}

e−βM dλ
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≥ log

(
1

2
λ({ϕ ≤M})

)
≥ log

(
K

2

)
K→∞−−−−→∞.

For the rest, here are some pictures (which can be justified with some εs and δs):

So s(E) = minβ>0{s∗(β) +βE} is close to infβ>0 s
∗(β) = log λ({ϕ = 0}) = limE↓0 s(E)

if E is small enough. Similarly, if E is very big,

s(E) = min
β>0
{s∗(β) + βE} → ∞.

as E →∞.
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Lemma 12.1. s is differentiable on (0,∞) (i.e. no corners).

Proof. s is differentiable at E iff D+s(E) = D−s(E) = s′(E). By our previous discussion,
this is equivalent to if there is only one slope β for a supporting tangent at E. This is
equivalent to if for this E, the solution to s(E)+(−s∗(β)) = βE in β is unique. Equivalently,
this is when infβ>0{s∗(β) + βE} is achieved at exactly one β. This occurs precisely when
s∗(·) + E(·) is strictly concave where the minimum is achieved. Quantifying over E this
tells us that s is differentiable if and only if s∗ is strictly convex.

Now let’s show that s∗ is strictly convex: Suppose α > β > 0 and 0 < t < 1. Then

s∗(tα+ (1− t)β) = log

∫
e(−tα−(1−t)β)ϕ dλ

Apply Hölder’s inequality with exponents 1/t and 1/(1− t):

≤ t log

∫
e−αϕ dλ+ (1− t) log

∫
e−βϕ dλ,

with equality iff e−αϕ is a constant multiple of e−βϕ. This is possible only if ϕ is constant
a.e., which is not true.

Proposition 12.2. s is strictly concave on [0,∞).

Proof. As before, this is equivalent to s∗(β) = log
∫
e−βϕ dλ being differentiable. This

holds by differentiating under the integral.
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13 Observing Macroscopic Quantities From Microscopic States

13.1 Recap

We have a phase space (M,λ) which is a σ finite but not finite measure space. The energy
of one particle is ϕ : M → [0,∞), where minϕ = ess minϕ = 0. Then we know that

λ×n

({
(p1, . . . , pn) ∈Mn :

1

n
Φn(p1, . . . , pn) :=

1

n

n∑
i=1

ϕ(pi) ∈ I

})

= exp

(
n · sup

x∈I
s(x) + o(n)

)
,

where
s(x) = inf

β>0
{s∗(β) + βx}.

We also have the Fenchel-Legendre transform

s∗(β) = log

∫
e−βϕ.

β achieves equality in the definition of s

⇐⇒ s has a tangent of slope β at x

⇐⇒ D+s(x) ≤ β ≤ D−s(x)

⇐⇒ s∗(β + (−s(x)) = −βx
⇐⇒ D−s

∗(β) ≤ −x ≤ D+s
∗(β)

⇐⇒ s∗ has a tangent of slope −x at β.

Using s∗, we can prove:

•

s∗(β)→

{
log λ({ϕ = 0}) β →∞
∞ β ↓ 0.

• s∗ is strictly decreasing and strictly convex.

• s∗ is differentiable on (0,∞).

•

s(x)→

{
log λ({ϕ = 0}) x ↓ 0

∞ x→∞.

• s is strictly increasing and strictly concave.

• s is differentiable on (0,∞).
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13.2 Behavior of s′

Let’s analyze the behavior of s′:

Proposition 13.1.

s′(x)→

{
0 x→∞
∞ x→ 0.

Instead of a formal proof, here are some pictures. Look at the possible slopes we can
get for points on the graph of s and how they correspond to slopes for points on the graph
for s∗.

To get slope −x for very large x in the graph of s∗, we need very small β.
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13.3 Observing macroscopic quantities froms microscopic states

Now imagine we are looking at some other macroscopic observable quantity of the micro-
scopic state (p1, . . . , pn) ∈Mn. We will study functions for the form

Ψn(p1, . . . , pn) =
n∑
i=1

ψ(pi).

If M = R3 ×R3, we could take ψ(r, p) = 1D(r), which indicates whether a particle is in D
or not in D; then Ψn would be the total number of particles in D.

We need some regularity. A simple sufficient condition is that ψ is bounded. A
weaker but still sufficient condition is that for every β > 0, there is an ε > 0 such that∫
e−βϕe−γψ dλ <∞ for all γ ∈ (−ε, ε).

Let’s assume ψ is bounded, and we’ll ask about the distribution of Ψn on the approxi-
mate level set { 1

nΦn ∈ I}, where I is a small interval. We need to compare λ×n({ 1
nΦn ∈ I})

and λ×n({ 1
nΦn ∈ I, 1

nΨn ∈ J}). We use the generalized type-counting machinery with R2

to get an asymptotic for this:

λ×n
({

1

n
Φn ∈ I,

1

n
Ψn ∈ J

})
= λ×n

({
(p1, . . . , pn) ∈Mn :

1

n

n∑
i=1

(ϕ(pi), ψ(pi)) ∈ I × J

})

= exp

(
n · sup

(x,y)∈I×J
s̃(x, y) + o(n)

)
,

where s̃(x, y) : R2 → [−∞,∞) is an upper semicontinuous, concave function with

s̃(x, y) = inf
β,γ
{s̃∗(β, γ) + βx+ γy}.

and Fenchel-Legendre transform

s̃∗(β, γ) = log

∫
e−βϕe−γψ dλ.

Here, we assume ψ is bounded, |ψ| ≤M , so

s̃∗(β, γ) =

{
∞ β = 0

<∞ β > 0.

Here, s̃(x, y) ≤ s(x) for all y ∈ R. We want to find a y0 such that s̃(x, y0) = s(x) and
s̃(x, y) < s(x) for any other y. This will tell us that conditioned on Φ being x, we are likely
to have Ψ be y0 and not likely to have any other y. We have

s(x) = inf
β>0

{
log

∫
e−βϕ dλ+ βx

}
,
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which is greater than or equal to

s̃(x, y) = inf
β>0,γ∈R

{
log

∫
e−βϕe−γψ dλ+ βx+ γy

}
.

Lemma 13.1. s̃(x, y0) = s(x) and s̃(x, y) < s(x) for any other y, where

y0 =

∫
ψe−βϕ dλ∫
e−βϕ dλ

= 〈ψ, µβ〉

and

dµβ(p) =
e−βϕ(p) dλ(p)∫
e−βϕ dλ

is the Gibbs measure obtained from λ, ϕ, β.

Proof. First, s is differentiable, so for every x > 0, there is a unique β > 0 such that
s(x) = log

∫
e−βϕ dλ + βx. To achieve s̃(x, y0) = s(x), we must have that the function

γ 7→ log
∫
e−βϕe−γψ dλ+ βx+ γy0 achieves its minimum uniquely at γ = 0. This function

of γ is convex (by Hölder), strictly convex if ψ is not a.s. constant, and differentiable.
Assuming ψ is not a.s. constant, we need y0 such that

∂

∂γ

{
log

∫
e−βϕe−γψ dλ+ βx+ γy0

}
= 0

at γ = 0. This is the derivative of the log of the moment generating function. Differentiate
under the integral to get

∂

∂γ
log

∫
e−βϕe−γψ dλ =

∫
−ψe−βϕe−γψ dλ∫
e−βϕeγψ dλ

∣∣∣∣
γ=0

= −〈ψ, µβ〉.

So ∂
∂γ [· · · ]|γ=0 = −〈ψ, µβ〉+ y0, and this equals 0 iff y0 = 〈ψ, µβ〉.

Corollary 13.1.

λ×n
({∣∣∣∣ 1nΨn − 〈ψ, µβ〉

∣∣∣∣ > ε

} ∣∣∣∣ { 1

n
Φn ∈ I

})
≤ e−c·n+o(n),

where c is a constant, I is a short enough interval containing x, and we are using conditional
probability notation.

Remark 13.1. Given 1
nΦn ≈ x, we found that

Ψn ≈ n(its average over { 1
nΦn ≈ n}10)

≈ n〈ψ, µβ〉
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= 〈ψ(p1) + · · ·+ ψ(pn), µ×nβ 〉

=

∫
Ψn dµβ,n,

where

dµβ,n(p1, . . . , pn) =
e−βΦn(p1,...,pn) dλ×n(p)∫

e−βΦn dλ×n
= µβ × · · · × µβ

is called the canonical ensemble measure.

10This is called the microcanonical ensemble.
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14 Intro to Interacting Particles and Temperature

14.1 Properties of systems of non-interacting particles

Let’s recap what we’ve proved so far about systems of n non-interacting particles. We have
the phase space (M,λ), where (Mn, λ×n) describes the total state of all n particles. We
have shown that

λ×n( 1
nΦn ∈ I) = exp

(
n · sup

x∈I
s(x) + o(n)

)
,

where
s(x) = inf

β>0
{s∗(β) + βx}

can be expressed in terms of its Fenchel-Legendre transform:

s∗(β) = log

∫
e−βϕ dλ︸ ︷︷ ︸

logZ(β)

=
1

n
log

∫
Mn

e−βΦn dλ×n

=
1

n
logZn(β).

Here Zn(β) is called the partition function.
We have also proven some properties about s : R → [−∞,∞) and s∗ using their

relationship to each other:

• s ≡ −∞ on (−∞, 0).

•

s(x)→

{
∞ x→∞
const or −∞ x ↓ 0.

• s is strictly concave (iff s∗ is diferentiable) and differentiable (iff s∗ is concave)

•

s′(x)→

{
0 x→∞
∞ x ↓ 0.

Define the microcanonical ensemble11

dµn,I(p1, . . . , pn) =
1{ 1

n
Φn∈I}(p1, . . . , pn) dλ(p1) · · · dλ(pn)

λ×n({ 1
nΦn ∈ I})

.

11The term “ensemble” goes back to Gibbs, who used it before measure theory and its terminology were
around.
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For β > 0,

dµβ(p) =
1

Z(β)
e−βϕ(p) dλ(p)

is the normalized Gibbs measure.
Then

dµn,β(p1, . . . , pn) = dµβ(p1) · · · dµβ(pn)

=
1

Z(β)n
e−βϕ(p1) dλ(p1) · · · e−βϕ(pn) dλ(pn)

=
e−βΦn(p1,...,pn) dλ×n(p1, . . . , pn)

Zn(β)

is the canonical ensemble, which applies to all the particles at once.
Last time, we said that

µn,I({ 1
nΨn ≈ 〈ψ, µβ〉}) ≈ 1,

where Ψn = ψ(p1) + · · · + ψ(pn), I is a short interval around E, and β is chosen so that
〈ϕ, µβ〉 = E. We have that

µn,I({ 1
nΨn ≈ 1

n〈Ψn, µn,β〉}) ≈ 1,

so there is an equivalence of the canonical ensemble and the microcanonical in the limit
n→∞.

14.2 Wishlist for extending properties to interacting systems of particles

Suppose we have some sequence of σ-finite but not finite measure spaces (Mn, λn) with
“total energy” functions Φn : Mn → [0,∞). Then we want

λn( 1
nΦn ∈ I) = exp

(
n · sup

x∈I
s(x) + o(n)

)
,

where we can hopefully define s as usual and

s∗(β) = lim
n→∞

1

n
log

∫
Mn

e−βΦn dλ = lim
n→∞

1

n
logZn(β)

We will retain the following properties of s and s∗:

• s ≡ −∞ on (−∞, 0).

•

s(x)→

{
∞ (sometimes) x→∞
const or −∞ x ↓ 0.
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• s will not always be strictly concave but will usually be differentiable.

•

s′(x)→

{
0 (not always) x→∞
∞ (usually) x ↓ 0.

We can also define the canonical and microcanonical ensembles and hope for an equiv-
alence of ensembles in the limit, as well.

14.3 Defining temperature

What is temperature? When two bodies of different temperature come into contact for a
prolonged period of time, they will eventually both reach some equilibrium temperature.
Temperature is a quantity that determines when bodies/systems are in thermal equilibrium.
There is a canonical “thermodynamic temperature” (which can be measured, for example,
by a mercury thermometer) which we want to be able to define.12

To interpret this, consider two systems (Mn, λn),Φn : Mn → [0,∞) and (M̃n, λ̃n), Φ̃n :

M̃n → [0,∞). There is the combined system is (Mn × M̃n, λn × λ̃n) with total energy
Φn(p) + Φ̃n(p̃). Note that once again we are assuming very weak interaction between the
systems in terms of energy. If we condition on

{(p, p̃) ∈Mn × M̃n : 1
2n(Φn(p) + Φ̃n(p̃)) ∈ I},

what is the typical split of total energy between Φn and Φ̃n?
Suppose

λn({ 1
nΦn ∈ I}) = exp

(
n · sup

I
s+ o(n)

)
,

λ̃n({ 1
n Φ̃n ∈ I}) = exp

(
n · sup

I
s̃+ o(n)

)
.

Then consider (Φn(p), Φ̃n(p̃)) : Mn × M̃n → [0,∞)2 with

λn × λ̃n({( 1
nΦn,

1
n Φ̃n) ∈ I × J}) = exp

(
n · sup

x∈I,y∈J
(s(x) + s̃(y)) + o(n)

)

This is the same when I × J are replaced by general open, convex sets.
In the following picture of the microcanonical ensemble, conditioning on 1

2n(Φn(p) +

Φ̃n(p̃)) ∈ intK means conditioning on the blue strip:

12Historically, the mysterious quantity “entropy” was discovered first, and temperature was defined rel-
ative to it.
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The most likely energy split occurs where s(x)+s̃(y) is maximized on this strip. Suppose
the strip is very thin around {x + y = E}. We want to maximize s(x) + s̃(E − x) as x
varies in [0, E]. If s, s̃ are differentiable, this requires

∂

∂x
[s(x) + s̃(E − x)] = 0,

i.e. s′(x) = s̃′(E − x). That is, systems are in thermal equilibrium at individual energies x
and y = E − x only if β = s′(x) = s̃′(y) = β̃. This is the unique maximizer, so this is “if
and only if” in the case where s, s̃ are strictly concave.

So we define the thermodynamic temperature of the system with entropy function
s to be

T =
1

β
=

1

s′(x)
.

Here, β is known as the inverse temperature.
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15 Models With Additional Thermodynamical Parameters

15.1 Recap

Suppose we have two thermodynamical systems with energy functions Φn : Mn → [0,∞)

and Φ̃n : M̃n → [0.∞). Then

λn

({
1

n
Φn ∈ I

})
= exp

(
n · sup

x∈I
s(x) + o(n)

)
,

λ̃n

({
1

n
Φn ∈ I

})
= exp

(
n · sup

x∈I
s̃(x) + o(n)

)
.

We are studying what happens when we put the systems in thermal contact and constrain
them so that the total energy is ≈ nE. In equilibrium, energy split between the systems
is decided by maximizing s(x) + s̃(E − x). If the exponent functions s, s̃ are differentiable,
then the condition is

s′(x) = s̃′(E − x).

Hence, we denote 1
s′(x) as the thermodynamic temperature of the first system at energy

x. In physics, the dependence of s on energy per particle x and any other parameters in
the model is known as the fundamental relation of the system.13

15.2 Fundamental relation and equivalence of ensembles

In a laboratory, suppose we constrain the temperature of a system to be T = 1/β (instead
of controlling the total energy). Now we can look for energy per particle as a the root of
the equation s′(x) = β if you know the fundamental relation of the system.14

Alternatively, if we are also expecting equivalence of ensembles, we can make predictions
about other thermodynamical quantities based directly on the canonical ensemble/the
Gibbs measure

dµn,β(p) =
e−βΦn(p) dλn(p)

Zn(β)
.

Note that the microcanonical ensemble is determined by the total energy you’re constrain-
ing around, while the canonical ensemble is determined by the temperature. So in this case,
we can determine the behavior of the system using temperature, which is the quantity we
can actually control in a lab.

13In practice, it may be easier to describe s∗ instead.
14You can run into trouble here if s has any flat regions.
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15.3 Gas in a piston chamber

Example 15.1. Suppose we have gas in a chamber, where at one end, there is a piston.
Assume the piston is frictionless.

If the piston can slide back and forth, then it will be not moving when the gas inside
is at the same pressure as the atmospheric pressure of the air outside the box. Thus, our
system has an additional parameter, which can be modeled using the force on the piston,
the pressure of the gas, or the total volume v of the chamber.

We’ll begin our discussion with this example as the model, and then we will abstract
out what we need to discuss general models with additional parameters. For simplicity,
we will assume the area of the piston equals 1. How can we understand the dependence
between the pressure and the volume from the fundamental relation?

Let’s consider n “non-interacting” classical particles. The total energy of a particle
with position r and momentum p is

ϕ(r, p) = ϕpot(r) +
1

2
|p|2,

and the total energy of the system is

Φn(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕ(ri, pi).

We will now include the volume v as a parameter in all these functions. Assuming the
particles bounce off the walls elastically15, we want to relate the pressure of the gas to the
volume of the chamber. Forces are obtained as gradients of total potential energy, so the
force on the piston is

∂

∂v
Φn(v, r1, . . . , rn, p1, . . . , pn) =

n∑
i=1

∂ϕpot(v, ri)

∂v
.

15In reality, there is a repulsive force that is weak unless the particles are very close together, in which
case it becomes very strong.

55



For most states (r1, . . . , rn, p1, . . . , pn), this will be accurately predicted by〈
n∑
i=1

∂ϕpot

∂v
(v, ·), µn,I

〉
,

where µn,I is the microcanonical ensemble. Or, if we have equivalence of enesmbles, this is
predicted by 〈

n∑
i=1

∂ϕ

∂v
(v, ·), µn,β

〉
,

where µn,β is the canonical ensemble.
To understand this, look at

∂

∂v
s∗(v, β) =

∂

∂v

{
1

n
log

∫
e−βΦn(v,·) dλn

}
=

1

n

∫
−β ∂Φn

∂v e
−βΦn dλn∫

e−βΦn dλn

= − 1

n
β

〈
∂Φn

∂v
, µn,β

〉
.

So
∂

∂v
F (v, β) =

〈
∂Φn

∂v
, µn,β

〉
,

where
F (v, β) = −n

β
s∗(v, β) = Tns∗(v, β).

This is known as the free energy, the Helmholtz function, or the Helmholtz free
energy. So the pressure is

P =
∂

∂v
F (v, β) =

∂

∂v
[−T logZn(v, β)].

Here is another way to get this in terms of s itself:

Lemma 15.1. If s(v, x) is strictly concave in β and C2 in both parameters, then

∂

∂v
s∗(v, β) =

∂

∂x
s(v, x).

Proof. Here is a proof by picture. Draw s(v, x) and s(v + dv, x):
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Recall that s∗(v, β) is the vertical-axis intercept when we draw the tangent line to s at
x. Here, β = s′(x). On the tangent line to the new blue curve in this picture, the slope
maybe changed a little bit. Instead, find a place where a tangent of the same slope hits the
blue curve and consider the difference of those intercepts. The difference between these
changes in the intercept end up being a second order difference, so they disappear in the
derivative.

Once we know s, this leads to equations that relate V, P, T or V, P,E, etc. Once you
have any two parameters, you can solve for the third. Any such equation is called an
equation of state.
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16 The Ideal Gas Law and Discretization

16.1 Recap

Last time, we set up a model with total energy Φn : I × Mn → [0,∞), where I is an
set specifying an extra parameter, such as the volume v of the enclosing system. Let
Sn(v, x) := log λn({ 1

nΦn(v, ·) ≈ x}), and we assume that 1
nSn(v, x) → s(v, x), where s is

concave in x, etc. We have the partition function Zn(v, β) =
∫
e−βΦn dλn, and we assume

that 1
n logZn(v, β) → s∗(v, β), where β > 0. These are related by using the Fenchel-

Legendre transform:
s(v, x) = inf

β>0
{s∗(v, β) + βx},

where the inf is achieved at β = ∂
∂xs(v, x).

In our piston chamber example, the “pressure” P associated to v was〈
∂Φn(v, ·)

∂v
, µn,β

〉
=

∂

∂v
[−T logZn(v, β)]︸ ︷︷ ︸

=F (v,β)

,

where F (v, β) is the Helmholtz free energy and T := 1/β is the thermodynamic
temperature.

≈ ∂

∂v
[−Tns∗(v, β)]

Here are the assumptions we have been making here:

• For most microscopic states, this quantity stays close to its average with respect to
to the microcanonical ensemble.

• We can replace the microcanonical ensemble by the canonical ensemble.

• We are assuming that we can interchange integration and differentiation in the above
calculation (this is fortunately not hard to justify using convexity arguments).

16.2 The ideal gas law

Assume a gas of n (mass 1) non-interacting particles is in a region (cylinder C with cross-
sectional area 1 and length v).
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The state is (r1, . . . , rn, p1, . . . , pn) ∈ (R3 × R3)n, and the potential energy is

ϕpot(r) =

{
0 r ∈ C
∞ r /∈ C.

The total energy is

Φn(r1, . . . , rn, p1, . . . , pn) =

{∑n
i=1

1
2 |pi|

2 ri ∈ C ∀i
∞ otherwise.

Our goal is to understand the pressure in terms of temperature and volume. We
understand this through

Zn(v, β) =

∫
· · ·
∫
e−βΦn dm×n3 (r1, , . . . , rn) dm×n3 (p1, . . . , pn)

=

∫
Cn

dr1 · · · drn ·
∫
· · ·
∫
e−β

∑n
i=1 |pi|2/2 dp1 · · · dpn

= vn ·
(∫

e−β|p|
2/2 dp

)n
= vn ·

((
2π

β

)3/2
)n

.

Then

Fn = T logZn = Tn log v − 3Tn

2
log(2πT ),

and so the pressure is

P =
∂Fn
∂v

=
Tn

v
.

Thus, we get the Ideal Gas Law:16

PV = nT.

In Gay-Lussac’s version of this law, he derived a slightly more complicated-looking expres-
sion

PV = const · n · (const + θ),

where θ is the Celsius temperature and the constant next to it is ≈ 273.16o C.

16If you are using standard physical units, you need a constant in here to facilitate the conversion of
units.
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16.3 Discretization in models with interaction

Suppose we have n particles in a region Rn ⊆ R3 with volume |Rn|. Then the position is
(r1, . . . , rn) ∈ Rnn, and

Φn(r1, . . . , rn) =
n∑
i=1

ϕpot(ri) +
∑
i 6=j

ϕint(ri − rj) +
n∑
i=1

1

2
|pi|2.

Here, the measure is λn = m×n3 ×m×n3 . The entropy

sn(x) = log λn({(r1, . . . , rn, p1, . . . , pn) : 1
nΦn ≈ x}).

We have a new kind of limit: The region should depend on n, so that |Rn|n → some limit =
v. This little v is called the molar volume.

Note that
λn({(r1, . . . , rn) ∈ Rnn}) = |Rn|n ∼ (nv)n = nnvn.

This blows up with n. The solution is to not care about the ordering of the positions
of the particles (treating the particles as indistinguishable). Thus, we actually define
λn = 1

n!m
×n
3 ×m×n3 , and this quantity ∼ (v/e)n.

With this choice of λn now look at

Zn(β) =

∫
Rnn

e−β
∑
ϕpot(ri)−β

∑
ϕint(ri−rj) dr1 · · · drn ·

∫
(R3)n

e−(β/2)(|p1|2+···+|pn|2) dp1 · · · dpn

=
1

n!

∫
Rnn

e−potential terms dr1 · · · drn ·
(

2π

β

)3n/2

.

So we get

logZn(β) = log

(
1

n!

∫
Rnn

(· · · ) dr1 · · · drn

)
+

3n

2
log

2π

β
.

To “discretize” such a model, focus on the first term, ignore the second term, and then
discretize Rnn ⊆ (R3)n to (Rn∩εZ3)n ⊆ (εZ3)n. Then we replace m3 with counting measure
times ε3.

Next time, we will show how these considerations can allow us to derive the ideal gas
law again.
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17 Deriving The Ideal Gas Law With Nonconstant Volume

17.1 Recap

Last time, we had a model of n interacting particles in a region Rn ⊆ R3. We will keep
the volume per particle constant:

|Rn|
n
→ v.

Then the phase space is Mn = Rn × R3 for positions and momenta, and the measure is
λn = 1

n!m3×m3, where the 1
n! shows that we are treating the particles as indistinguishable.

The total energy of our particles is

Φn(r1, . . . , rn, p1, . . . , pn) =
n∑
i=1

ϕpot(ri) +
∑
i,j

ϕint(ri − rj) +
n∑
i=1

1

2
|pi|2,

so we have potential energy, interaction energy, and kinetic energy terms. The partition
function is

Zn(β) =

∫
e−βΦn dλn = Z̃n(β)︸ ︷︷ ︸

pot. + int. energy part

·
(

2π

β

)3n/2

︸ ︷︷ ︸
kinetic energy part

,

where

Z̃n(β) =
1

n!

∫
· · ·
∫
Rnn

e−β
∑n
i=1 ϕpot(ri)−β

∑
i,j ϕint(ri−rj) dm×n3 .

17.2 Derivation of the ideal gas law with nonconstant volume

Now discretize17 space: pick ε > 0 and let Bn = Rn∩εZ3. We will analyze the resulting ap-
proximation to Z̃n(β) and then let ε ↓ 0 to derive an equation of state. The approximation
to Z̃n(β) is to

replace

∫
· · ·
∫
Rnn

with
1

n!

∑
r1,...,rn∈Bn

r1,...,rn distinct

.

or equivalently with the sum ∑
ω⊆Bn,|ω|=n

.

We will actually use the indexing∑
ω∈{0,1}Bn ,
|ω|=n

, where |ω| =
∑
i∈Bn

ωi.

17Discretization is not actually necessary, but without it, our arguments will take too long for the purposes
of this course.
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So we need to analyze

Ẑn(β) =
∑

ω∈{0,1}Bn
|ω|=n

e−β
∑
i∈Bn ϕpot(i)·ω(i)e−β

∑
i,j∈Bn ϕint(i−j)ωiωj .

Now let’s rederive the ideal gas law again: ϕpot = ϕint = 0, leaving

Ẑn(β) = |{ω ∈ {0, 1}Bn : |ω| = n}| =
(
|Bn|
n

)
=

(
|Bn|
n
|Bn| |Bn|

)
where n/|Bn| → ε3/v.

= exp

(
|Bn| ·H

(
ε3

v
, 1− ε3

v

)
+ o(|Bn|)

)
As n→∞, this looks like

= exp

(
n
v

ε3
H

(
ε3

v
, 1− ε3

v

)
+ o(n)

)
.

So 1
n log Ẑn(β)→ v

ε3
H( ε

3

v , 1−
ε3

v ) as n→∞. So in this model.

P =
∂

∂v
[−T log Ẑn(β)]

= nT
∂

∂v

[
v

ε3
H

(
ε3

v
, 1− ε3

v

)]
+ o(n)

Now we calculate

∂

∂v

[
v

ε3

(
−ε

3

v
log

ε3

v
−
(

1− ε3

v

)
log

(
1− ε3

v

))]
=

∂

∂v

[
log

v

ε3
−
( v
ε3
− 1
)

log

(
1− ε3

v

)]
=

1

v
− ∂

∂v

[( v
ε3
− 1
)

log

(
1− ε3

v

)]
,

where the right term becomes negligible as ε→ 0 (there may be some calculation errors).
So

P =
nT

v
+ oε↓0(n),

and we get the ideal gas equation of state, PV = nT , after letting ε → 0. The value of
this method is that we can vary the volume as we increase the number of particles. If we
increased the number of particles without increasing the volume, the pairwise interactions
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of the particles may blow up. Note that most quantities here admit direct control or
observation in the laboratory.

Here is how we may plot experimental data following the ideal gas law. The lines are
isotherms, curves where T is held constant.

17.3 The van der Waals equation of state

In 1872, van der Waals wrote the more accurate following equation of state(
P +

a

v2

)
︸ ︷︷ ︸

effective
pressure

· (v − b)︸ ︷︷ ︸
effective

compressible
volume

= nT,

where a, b are constants. This equation tells you what the effective addition to pressure
a/v2 is when the volume changes, accounting for the approximation errors in our model.
This equation of state predicts real world behavior in a larger range of contexts than the
ideal gas law. Here is a picture of what this equation of state predicts:
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However, this predicts that at low temperatures, gasses can “catastrophically collapse.”
Maxwell later adjusted the model by assuming that we adjust the curve so the total area
under the curve is the total work. This is known as “Maxwell’s equal area correction.” We
will discuss this story next time.
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18 Deriving van der Waal’s Equation

18.1 Recap

Last time, we derived the ideal gas law

Pv = nT,

where the volume is not held constant as the number n of particles increase. We mentioned
van der Waal’s equation, which is a better description of real gasses:(

P +
a

v2

)
(V − b) = nT,

where a and b are constants. Here is what the equation predicts:

The flat regions in this picture are the Maxwell correction to van der Waal’s equation.
Our next goal is to derive this equation from some simple model.

18.2 Overview of van der Waal’s equation

The continuous model (with the kinetic part removed) has the partition function

Z̃n(β) =
1

n!

∫
· · ·
∫
Rnn

exp

−β n∑
i=1

ϕpot(ri)− β
∑
i,j

ϕint(ri − rj)

 dm×n3 .
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The discrete analogue is

Z̃n(β) =
∑

ω∈{0,1}Bn
|ω|=n

exp

−β ∑
i∈Bn

ϕ(i)ωi − β
∑
i,j∈Bn

ϕint(i− j)ωiωj

 ,

where Bn = Rn ∩ εZ3.
Under what conditions can we derive van der Waal’s equation? We will do this for the

case b = 0, i.e. (
P +

a

v2

)
v = nT.

(Getting the case b > 0 is similar but more intricate, so we will not do it for the sake of
time.)

Imagine two tiny regions in a gas.

The mass in each tiny region is proportional to the density, 1/v. So the force between
the two regions is dependent on 1/v. This gives intuition for why there should be a 1/v in
the equation. This idea of interactions between molecules will lead to the equation.18

18.3 Setup and notation

To incorporate a limit of “long range forces,” fix an attractive potential energy of interaction
ϕ : R3 → [0,∞) (since ϕ is attractive, to avoid having a negative potential, we assume ϕ is
positive and just change the sign in the partition function equation). We will also assume

• ϕ ∈ C1,

• ϕ(x) = 0 for |x| ≥ 1.

• ϕ(x) = ϕ(−x).

18These forces between molecules are now known as van der Waals forces.
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Let

ϕr(x) =
1

r3
ϕ
(x
r

)
, for r > 0,

so ∫
ϕr dm3 =

∫
ϕdm3 = a

for all r > 0. We will be taking n → ∞ and then taking r → ∞. Here’s what this looks
like:

To get a > 0 and b > 0, we would need to treat a picture like this:

We want to estimate
Z̃n(β) =

∑
ω∈Ωn
|ω|=Nn

exp (−βΦr
n(ω)) ,

where Ωn := {0, 1}Bn , Nn is the number of particles in Bn, and Bn = {1, . . . , n}3 (note we
are changing notation to make n be some geometric parameter rather than the number of
particles). We also have

Φr
n(ω) =

∑
i,j∈Bn

ϕr(ε(i− j))ωiωj .
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18.4 Splitting space into boxes with mass pooled around the centers

We want to estimate 1
n log Ẑn(β), and we will let n, r → ∞, ε → 0, and differentiate with

respect to v. Here is a picture of how we will do it:

Fix another m ∈ N, and divide Bn into m ×m boxes. Let Cn be the set of centers of
these boxes. If k ∈ Cn, then Ck will be the box with center k. (We will assume that m | n
for simplicity.). Picture 1� m� r, and let ω ∈ Ωn with |ω| = Nn. We will define a map
D : Ωn → Ω̃n = {0, 1/m3, 2/m3, . . . , 1}Cn by

D(ω)k =
1

m3

∑
i∈Ck

ωi.

The idea is that Φr
n(ω) is approximately a function only of D(ω), provided r � m.

Define the effective energy of a configuration ρ ∈ Ω̃n:

Φ̃r
n(ρ) = m6

∑
k,`∈Cn

ρkρ`ϕ
r(ε(k − `))

Lemma 18.1. If D(ω) = ρ, then

Φr
n(ω) = Φ̃r

n(ρ) +O

(
n · 1

mr

)
.

Proof. Suppose i ∈ Ck and j ∈ C`. Then

ϕr(ε(i− j))− ϕr(ε(k − `)) ≤ ‖∇ϕr‖(|ε(i− k)|+ |ε(j − `)|)
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=
1

r4
‖∇ϕ‖ ·O

(mε
r4

)
= O

(mε
r4

)
.

Therefore, ∣∣∣∣∣∣
∑

i∈Ck,j∈C`

ϕr(ε(i− j))ωiωj −m6ϕr(ε(k − `))ρkρ`

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈Ck,j∈C`

[ϕr(ε(i− j))− ϕr(ε(k − `))]ωiωj

∣∣∣∣∣∣
≤ m6O

(mε
r4

)
= O

(
m7ε

r4

)
.

All that remains will be to sum over all pairs of boxes, which we will do next time.
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19 Deriving van der Waal’s Equation (Cont.)

19.1 Recap+partitioning space into boxes lemma

In our current setting we have a box Bn = 1
ε (Rn∩εZ3) = {1, . . . , n}n. We have Nn particles

in Bn, where |Bn|Nn
→ v

ε3
. The particles are located at ω ∈ Ωn = {0, 1}Bn , where |ω| = Nn.

We have a “local density map” D : Ωn → Ω̃n = {0, 1/m3, . . . , 1}Cn with

D(ω)k =
1

m3

∑
i∈Ck

ωi,

where m | n and {Ck : k ∈ Cn} is a partition of Bn into (m×m×m)-boxes and Cn is the
set of centers of boxes.

The original energy of ω ∈ Ωn is

Φr
n(ω) = −

∑
i,j∈Bn

ϕr(ε(i− j))ωiωj ,

where ϕ : R3 → [0,∞) is C1, symmetric, has support ⊆ B1(0), and ϕr(x) = r−3ϕ(x/r) is
a dilation for r > 0.

The effective energy of ω ∈ Ω̃n is

Φ̃r
n(ρ) = −m6

∑
k,`∈Cn

ϕr(ε(k − `))ρkρ`.

We also had the following lemma:

Lemma 19.1. If D(ω) = ρ, then

Φr
n(ω) = Φ̃r

n(ρ) +O

(
n3m

ε2r

)
.

Proof. Last time, we showed that∣∣∣∣∣∣
∑

i∈Ck,j∈C`

ϕr(ε(i− j))ωiωj

∣∣∣∣∣∣ ≤ m6O

(
m7ε

r4

)
.

Finally, we sum over k, ` ∈ Cn:

|Φr
n(ω)− Φ̃r

n(ρ)| =

∣∣∣∣∣∣
∑
k,`∈Cn

 ∑
i∈Ck,j∈C`

ϕr(ε(i− j))ωiωj −m6ϕr(ε(k − `))ρkρ`

∣∣∣∣∣∣ .

70



Observe that if dist(Ck, C`) > r/ε, then the expression in the square braces equals 0. How
many pairs (k, `) are left? The number of k we can choose first is (n/m)3. Then the number

of `s that “hit” k equals O(r3/(εm3)). The total number of nonzero terms is O
(
n3r3

ε3m6

)
.

Now multiply by the previous bound on those terms to get

≤ O
(
n3m

ε2r

)
.

Note that we will let n, r,m→∞ (with m =
√
r), and then finally let ε→ 0.

19.2 Estimating the size of the partition

Now use this lemma to approximate the partition

Zrn =
∑
ω∈Ωn
|ω|=Nn

exp(−βΦr
n(ω))

=
∑
ρ∈Ω̃n

|ρ|=Nn/m3

∑
D(ω)=ρ

exp(−βΦr
n(ω))

=
∑
ρ∈Ω̃n

|ρ|=Nn/m3

∑
D(ω)=ρ

exp(−βΦ̃r
n(ω)) · exp

(
O

(
n3m

ε2r

))

=
∑
ρ∈Ω̃n

|ρ|=Nn/m3

|D−1({ρ})| exp(−βΦ̃r
n(ω))

︸ ︷︷ ︸
Z̃rn

· exp

(
O

(
n3m

ε2r

))
.

Next, estimate |D−1(ρ)|. This equals

∏
k∈Cn

(# ways to put m3ρk particles into m3 holes) =
∏
k∈Cn

(
m3

m3ρk

)
=
∏
k

em
3H(ρk,1−ρk)+o(m3)

= en
3[W (ρ)+o(1)],

where

W (ρ) :=
1

n3

∑
k∈Cn

m3H(ρk, 1− ρk) =
1

(n/m)3

∑
k∈Cn

H(ρk, 1− ρk).
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Now insert this new approximation to get

Z̃rn = eo(n
3)

∑
ρ∈Ω̃n

|ρ|=Nn/m3

exp(n3W (ρ)− βΦ̃r
n(ρ))

︸ ︷︷ ︸
Ẑrn

.

The key observation is that the number of terms here is ≤ (m3+1)n
3/m3

= expO(n3 · logm
m3 ).

We will use this via the following:

Lemma 19.2. Let ai ≥ 0 for all i ∈ I (with |I| <∞). Then

max
i
ai ≤

∑
i∈I

ai ≤ |I|max
i
ai.

Corollary 19.1.

n3 max

{
W (ρ)− β

n3
Φ̃r
n(ρ) : ρ ∈ Ω̃n, |ρ| =

Nn

m3

}
≤ log Z̃rn

≤ n3 max

{
W (ρ)− β

n3
Φ̃r
n(ρ) : ρ ∈ Ω̃n, |ρ| =

Nn

m3

}
+O

(
n3 · logm

m3

)
.

Our main remaining task is to understand the maximum of

W (ρ)− β

n3
Φ̃r
n(ρ)

for ρ ∈ Ω̃n such that |ρ| = Nn/m
3. Let’s unpack this:

W (ρ)− β

n3
Φ̃r
n(ρ) =

1

(n/m)3

∑
k

H(ρk, 1− ρk) +
βm6

n3

∑
k,`

ϕr(ε(k − `))ρkρ`

=
1

(n/m)3

[∑
k

H(ρk, 1− ρk) + βm3
∑
k,`

ϕr(ε(k − `))ρkρ`
]

The key idea is to bound the right term above by something with no cross terms. Observe
that ρkρ` ≤ 1

2(ρ2
k + ρ2

` ) using the AM-GM inequality. Insert this into the second term
above:

m
∑
k,`

ϕr(ε(k − `))ρkρ` ≤ m
∑
k,`

ϕr(ε(k − `))
[
ρ2
k + ρ2

`

2

]
= m3

∑
k,`

ρ2
kϕ

r(ε(k − `))
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=
1

ε3

∑
k∈Cn

ρ2
k

(εm)3
∑
`∈Cn

ϕr(ε(k − `))


︸ ︷︷ ︸

=:α(n,m,r,ε,k)

.

So we will try to maximize

1

(n/m)3

[∑
k

H(ρk, 1− ρk) + βm3
∑
k

ρ2
k · α(n,m, r, ε, k)

]
=

1

(n/m)3

∑
k∈Cn

[
H(ρk, 1− ρk) + βm3 · α(n,m, r, ε, k)ρ2

k

]
Now consider

α(n,m, r, ε, k) = (εm)3
∑
`∈Cn

ϕ(ε(k − `))

Ignoring that some k can be on the boundary of the box,

≤ (εm)3
∑

v∈εmZ3

ϕr(v)

= (εm)3
∑

v∈εmZ3

1

r3
ϕ(v/r)

=
ε3m3

r3

∑
v∈(εm/r)Z3

1

r3
ϕ(v).

As r →∞, this will give a Riemann sum for
∫
ϕ. We will plug this back into the previous

expression next time.
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20 Deriving van der Waal’s Equation (Part 3)

20.1 Bound on α

Last time, we had a quantity α which depended on various factors. We bounded it by a
term α(m, r, ε) which only depended on these 3 quantities. We will compare this to the
integral

∫
ϕ =

∫
ϕr.

∣∣∣∣α(m, r, ε)−
∫
ϕr
∣∣∣∣ =

∣∣∣∣∣∣(εm)3
∑

v∈εmZ3

ϕr(v)−
∫
ϕr

∣∣∣∣∣∣
Let Qv be the cube with side length εm and center v.

=

∣∣∣∣∣∣
∑

v∈εmZ3

(
(εm)3ϕr(v)−

∫
Qv

ϕr
)∣∣∣∣∣∣

=

∣∣∣∣∣∑
v

(
|Qv|ϕr(v)−

∫
Qv

ϕr
)∣∣∣∣∣

≤
∑
v

∫
Qv

|ϕr(v)− ϕr(x)| dx

≤
∑

v:Qv∩Br 6=∅

(εm)3

�
�
�
√

3

2
εm ·�

��
�*

O(1)

‖∇ϕ‖
r4

= O

(
r3

(εm)3
· (εm)4

r4

)
= O

(εm
r

)
.

So
α(m, r, ε) = α+O

(εm
v

)
for some constant α.

20.2 Maximizing the entropy term

Now consider maximizing

1

(n/m3)

∑
k∈Cn

[H(ρk, 1− ρk) + γρ2
k],

where γ = βα(m, ε, r)/ε3 = (β/ε3)(α + O(εm/r)). Now, we want to try to maximize this
over ρ ∈ Ω̃n with |ρ| = Nn/m

3 (recall Nn/n
3 → ε3/v as n → ∞). We can also write this
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expression as
1

|Cn|
∑
k∈Cn

fγ(ρk),

where fγ(x) = H(x, 1− x) + γx2 for 0 ≤ x ≤ 1.
What does fγ look like? Here is a picture:

There is a critical value of γ which is the largest γ for which this is still concave. Check
using calculus that the critical γ equals 2.

If γ ≤ 2, fγ is concave, so Jensen’s inequality gives

1

|Cn|
∑
k∈Cn

fγ(ρk) ≤ fγ

(
1

|Cn|
∑
k

ρk

)

= fγ

(
Nn

m3

)
= fγ

(
Nn

m3

)
n→∞−−−→ fγ

(
ε3

v

)
.

We can make this close to tight by taking ρk ≈ ε3/v for all k.
What if γ > 2? Use the concave envelope Fγ of fγ :
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Then

1

|Cn|
∑
k∈Cn

fγ(ρk) ≤
1

|Cn|
∑
k∈Cn

Fγ(ρk)

≤ Fγ

 1

|Cn|
∑
k∈Cn

ρk


≈ Fγ

(
ε3

v

)
as n→∞. This also can be brought as close as we like once n→∞ and m is large.

• If ε3/v /∈ (a, b), then Fγ(ε3/v) = fγ(ε3/v). Then just take ρk ≈ ε3/v for all k.

• If a < ε3/v < b, then ρk ≈ ε3/v for all k will give you

1

|Cn|
∑
k∈Cn

fγ(ρk) = fγ

(
ε3

v

)
< Fγ

(
ε3

v

)
.
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Instead, express ε3/v = ta + (1 − t)b. Now choose the values ρk so that ρk ≈ a for
≈ t|Cn| many ks and ρk ≈ b for ≈ (1− t)|Cn| many ks. Then

1

|Cn|
∑
k∈Cn

fγ(ρk) ≈ tfγ(a) + (1− t)fγ(b) = Fγ

(
ε3

v

)

The conclusion is that

1

|Cn|
∑
k∈Cn

fγ(ρk) = Fγ

(
ε3

v

)
+O

(
1

m

)
as n→∞.

20.3 Maximizing the effective partition function

Is the maximization problem for log Ẑrn close to the same value? Yes!
Go back to

max
|ρ|=Nn/m3

{
W (ρ)− β

n3
Φ̃r
n(ρ)

}
.

Can we get this close to the same value? Yes. Since fγ is strictly convex near a and b, we
must have roughly a t fraction of ρks close to a and roughly a (1− t) fraction of ρks close
to b

When is the above maximum close to the average of fγ? We had the bound via AM-GM:

∑
k

H(ρk, 1−ρk)+βm3
∑
k,`

ϕr(ε(k−`))ρkρ` ≤
∑
k

H(ρk, 1−ρk)+βm3
∑
k,`

ϕr(ε(k−`))
ρ2
k + ρ2

`

2
.

The difference equals

βm3
∑
k,`

ϕr(ε(k − `))1

2
(ρk − ρ`)2.

This is small if ρk ≈ ρ` for most pairs (k, `) where ϕr(ε(k − `)) is not negligible. What
kinds of ρ achieve all these requirements? Choose it according to this picture:
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Then we do get

W (ρ)− β

n3
Φ̃r
n(ρ) ≈ 1

|Cn|
∑
k

fγ(ρk) ≈ Fγ
(
ε3

v

)
.

We will finish off this story next time.
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21 Deriving van der Waal’s Equation: The Final Chapter

21.1 Combining accumulated approximations for the partition function

So far, we had our original partition function

Zrn =
1

Nn!

∫
· · ·
∫
RNnn

e−β
∑
i,j ϕ

r(qi−qj) dm×Nn3 (q1, . . . , qNn).

We replaced it with the discretized partition function

Z̃rn =
∑

ω∈{0,1}Bn
|ω|=Nn

e−βΦrn(ω), Bn = Rn ∩ εZ3,

which is what we will prove results about. We also introduced the effective partition
function

Ẑrn =
∑
ρ∈Ω̃n

|ρ|=Nn/m3

en
3W (ρ)−βΦ̃rn(ρ),

which approximates Z̃rn.
So far, our approximations have been:

• (Unproved heuristic):
Zrn ≈ Z̃rne[small]·n as n→∞.

•

log Z̃rn = log Ẑrn +O

(
n3m

ε2r

)
+ o(n3)

= n3 max
ρ

{
W (p)− β

n3
Φ̃r
n(ρ)

}
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3)

= n3

[
Fβα(m,ε,r)

(
ε3

v

)
+���

��on→∞(1) +

�
�
�
��

O

(
1

m3

)]
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3)

Recall that fγ(x) = H(x, 1− x) + γx2 and Fγ(x) is the concave envelope of fγ(x) for
0 ≤ x ≤ 1.

= n3

[
Fβα/ε3

(
ε3

v

)
+
�
��

��
O
( m
ε2r

)]
+ (other error terms)

= n3Fαβ/ε3

(
ε3

v

)
+O

(
n3 · logm

m3

)
+O

(
n3m

ε2r

)
+ o(n3).
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We want everything in terms of Nn, rather than in terms of the volume of the box. So
let’s write

1

Nn
log Ẑrn =

1

n3

n3

Nn
[above stuff]

=
( v
ε3

+ on→∞(1)
)

[above stuff]

=
( v
ε3

+ o(1)
)[
Fαβ/ε3

(
ε3

v

)
+O

(
logm

m3

)
+O

( m
ε2r

)
+ o(1)

]
.

21.2 Taking limits to find the asymptotic behavior of the partition func-
tion

Let n→∞. Then r →∞ and m→∞ (with m =
√
r). Then, we will let ε→ 0. We get

lim
r→∞

lim
n→∞

1

Nn
log Z̃rn =

v

ε3
Fαβ/ε3

(
ε3

v

)
.

What happens here as ε→ 0?
We need the following lemma (proven in Homework 3):

Lemma 21.1. Suppose f : [0,∞)→ R is continuous with concave envelope F : [0,∞)→ R.
Assume f(x)/x→ 0 as x→∞. Then g : [0,∞)→ R, defined by

g(v) =

{
v · f(1/v) v > 0

0 v = 0,

has concave envelope equal to {
v · F (1/v) v > 0

0 v = 0.

We will apply this to fγ (making it flat to the right of the unit interval):
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So the remaining expression above is the concave envelope of v
ε3
fαβ/ε3( ε

3

v ), which is
explicit. This is

=
v

ε3

[
−ε

3

v
log

ε3

v
−
(

1− ε3

v

)
log

(
1− ε3

v

)
+
αβ

ε3

(
ε3

v

)2
]

= log
v

ε3
−
( v
ε3
− 1
)

log

(
1− ε3

v

)
+
αβ

v

= log v − log ε3 +
( v
ε3
− 1
)(ε3

v
+O

(
ε6

v2

))
+
αβ

v

= log v − log ε3 + 1 +O

(
ε3

v

)
+
αβ

v
.

In our original formulas for Ẑrn and Z̃rn, we should have had a factor of (ε3)Nn to account
for the number of particles per box. Putting that in (and carrying it throughout the whole
calculation), we are left with

v

ε3
fαβ/ε3

(
ε3

v

)
= log v + 1 +

αβ

v
+O

(
ε3

v

)
.

This is a uniform limit as ε ↓ 0 for v bounded away from 0. Check that we also get
convergence of the derivatives in v and that we get the same convergence for the concave
envelopes. So

lim
r→∞

lim
n→∞

1

Nn
log Z̃rn = conc. env. of

(
log v + 1 +

αβ

v

)
︸ ︷︷ ︸

g(v)

.

21.3 Recovering van der Waal’s equation and Maxwell’s equal area cor-
rection

What does this have to do for the van der Waal’s equation? Maxwell’s equal area correction
is precisely what you get when you replace log v+1+ αβ

v by its concave envelope. Explicitly,
we get:

P =
∂

∂v
[T log partition function].

We have
∂

∂v

[
1

β
log v +

1

β
+

1

v

]
=

1

βv
− α

v2
,

so

v
(
P +

α

v2

)
=

1

β
= T.
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That is, we get van der Waal’s equation,

v(P +
α

v2
) = NT.

In the case of non-concavity, how do we fix it?

P = ∂
∂v [T ·G(v)], so let’s graph g′ and G′, the derivative of the concave envelope.

Inside this shaded region above, recall which ρs carried most of the mass in Ẑrn =∑
ρ exp(n3W (ρ)−βΦ̂r

n(ρ)). Our analysis told us this, i.e. which micro configurations carry
most of the mass in the canonical ensemble. This means that the best ω have regions of
high density and regions of low density:
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That is, the substance separates into a high density region (liquid) and a low density
region (gas). For example, some of the water in a glass of water will evaporate into water
vapor. Thus, van der Waal’s equation correctly predicts the existence of a phase transition
between gas and liquids.
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22 Basics of Lattice Models

22.1 Lattices

In the derivation of van der Waal’s equation, we used a discretization and let ε→ 0. Now
we will begin looking at lattice models, where there is a fixed lattice; this precludes any
notion of particles getting too close to each other. Consider boxes Bn ⊆ Zd, which are
cuboids with all sides→∞. At each site i ∈ Bn, the set of possible “local states” is a finite
set A (the alphabet). So the microscopic states of the system are elements ω ∈ Ωn = ABn .

Example 22.1 (Lattice gases). If A = {0, 1}, we can interpret “ωi = 1” as “there is a
particle at i” and interpret “ωi = 0” as ‘there is no particle at i.”

Example 22.2 (Magnetizable solid). If A = {−1, 1}, we can interpret ωi as the “direction”
of a magnetic spin located at i inside a magnetizable solid. (More realistic magnet models
allow A to be a sphere in R3.)

Example 22.3. More generally, we could have A = {0, a1, a2, . . . , ak}. Here, 0 represents
the absence of a particle, and the ai represent possible internal states of particles.

22.2 Interactions

The total energy of ω ∈ Ωn will be given by an interaction.

Definition 22.1. An interaction is a family (ϕF : F ⊆ Zd, F finite), where

1. ϕF : AF → R

2. translation invariant:

ϕF ((av)v∈F︸ ︷︷ ︸
∈AF

) = ϕF+u((av+u)v∈F︸ ︷︷ ︸
∈Au+F

).

Then for ω ∈ Ωn, its total (potential) energy is

ΦBn(ω) =
∑
F⊆Bn

ϕF (ωF ).

84



Example 22.4. Most simply, a pair interaction has ϕF = 0 unless |F | = 1 or |F | = 2.
For example, as in our study of van der Waal’s equation, we could take A = {0, 1} and

ϕF (ω) =

{
−ϕr(i− j)ωiωj F = {i, j}
0 otherwise.

22.3 Interaction decay

We want to understand asymptotic behavior as Bn → Zd. This is known as the thermo-
dynamic limit. To get a meaningful limit, we need enough decay in interaction strength
with distance. Possible additional assumptions are:

1. Finite range: There exists some R <∞ such that ϕF = 0 if diamF ≥ R.

2. A bit more general: ϕ is in the big space of interactions if
∑

F30
‖ϕF ‖∞
|F | <∞. This

guarantees “finite energy per particle.”

3. ϕ is in the small space of interactions if
∑

F30 ‖ϕF ‖∞ <∞. This is more restrictive
than the big space.

Note that the big space and small space of interactions are Banach spaces, and these
quantities are norms. We will tend to prove results assuming finite range, with the under-
standing that a bit more careful reasoning will work for the more general assumptions.

So now we need to look at sets of the form

ΩBn(ϕ, I) =

{
ω ∈ ABn :

ΦBn(ω)

|Bn|
∈ I
}
,

for I ⊆ R. Here, we are keeping track of energy per unit volume.

22.4 Observables

Next, we need a notion of macroscopic observables. We will study these as “averages over
Bn.”

Definition 22.2. An observable is a function ψ : AW → R with W ⊆ Zd, and

ΨBn(ω) =
∑

i+W⊆Bn

ψ(ωi+W ).

Example 22.5. If A = {0, 1}, W = {0}, and ψ(a) = a, then

ΨBn(ω) =
∑
i∈Bn

ωi = # particles in Bn.
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22.5 Entropy

We want to study the growth of the cardinality of

ΩBn(ϕ, I;ψ, J) =

{
ω ∈ ABn :

ΦBn(ω)

|Bn|
∈ I, ΨBn(ω)

|Bn|
∈ J

}
,

where I is an open interval ⊆ R, and J is an open convex subset of Rn.

Theorem 22.1. Let sn(I, J) = log |ΩBn(ϕ, I;ψ, J)|. Then there exists a concave and upper
semicontinuous function s : R× Rr → [−∞,∞) such that

sn(I, J) = |Bn| · sup
(x,y)∈I×J

s(x, y) + o(|Bn|).

We will prove this assuming ϕ has finite range. In this case, we will simplify our work
by studying ∑

i+F⊆Bn ϕF (ωi+F )

|Bn|
∈ IF

for every diam(F ) < R, rather than

∑
equiv. classes of
diamF < R up
to translation

∑
i+F⊆Bn ϕF (ωi+F )

|Bn|
∈ I.

This lets us write

ΩBn(ψ, J) =

{
Ψn(ω)

|Bn|
∈ J

}
for a single observable ψ : AW → Rr′ with r′ bigger than r. Let’s restate the theorem:

Theorem 22.2. In the setting above,

sn(ψ, J) = |Bn| · sup
x∈J

s(x) + o(|Bn|),

where s : Rr → [−∞,∞) is concave and upper semicontinuous.

We would like to show that Sn(ψ, J) is superadditive. In fact, previously, we had

sn(ψ, J) + sm(ψ, J ′) ≤ sn+m

(
ψ,

n

n+m
J +

m

n+m
J ′
)

for non-interacting systems. First, we need a version for cuboids, something like

sB(ψ, J) + sB′(ψ, J
′) ≤ sB∪B′

(
ψ,

|B|
|B|+ |B′|

J +
|B′|

|B|+ |B′|
J ′
)
,
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when

But
ΨB∪B′(ω, ω

′) = ΨB(ω) + ΨB′(ω
′) + boundary terms.

We will have to take care of these boundary terms of make this argument work in this
case.
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23 Existence of the Thermodynamic Limit for Lattice Mod-
els

23.1 Recap

Let B be a big finite box in Zd (all sides “long enough,” which may be specified later).
We have a finite set A of single-site states telling us what is happening at a site (such as
whether a particle is present at that site). We will look at microscopic states ω ∈ AB and
macroscopic observables such as

ΨB(ω) =
∑

i+W⊆B
ψ(ωi+W ),

where W ⊆ Zd is a finite “window” and ψ : AW → Rn and W is fixed. Given U ⊆ Rn, let

ΩB(ψ,U) = {ω ∈ AB : 1
|B|ΨB(ω) ∈ U}.

Theorem 23.1. There exists a concave, upper semicontinuous function s : Rn → [−∞,∞)
such that

(a) maxx s(x) = log |A|.

(b) If U ⊆ Rn is a convex open set such that either U ∩ {s > −∞} = ∅ or U ∩ int{s >
−∞} 6= ∅, then

|ΩB(ψ,U)| = exp(|B| · sup
U
s+ o(|B|))

as B ↑ Zd (i.e. for any sequence 〈Bn〉 with side lengths →∞).

We want to use a superadditivity argument with the following type of configuration:

The problem is that when you write down ΨB∪B′(ω, ω
′), the translates of W may lie

on the boundary of B and B′. So there will be boundary terms we need to deal with:

ΨB∪B′(ω, ω
′) = ΨB(ω) + ΨB′(ω

′) + (boundary terms).
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23.2 Proving superadditivity with extra boundary terms

Proposition 23.1. Fix W,ψ. For every ε > 0, there is an M such that if B has all
side-lengths ≥M and R is larger, “big enough” box in terms of B, the the following holds:
If v1 + B, . . . , vm + B is a maximum-sized collection of disjoint B-translates in R and
U1, . . . , Um ⊆ Rn are convex and open, then

|ΩR(ψ,U)| ≥
m∏
i=1

|ΩB(ψ(Bi)ε)|,

where U = 1
mU1 + · · ·+ 1

mUm and Vε = {x : Bε(x) ⊆ V }.

In fact, if ω ∈ AR and ω|vi+B ∈ Ωvi+B(ψ, (Ui)ε) for all i, then ω ∈ ΩB(ψ,U).

Proof. We are assuming that 1
|B|Ψvi+B(ωvi+B) ∈ (Ui)ε for all i. Consider

ψR(ω) =
∑

v+W⊆R
ψ(ωv+W )

=
∑
i

∑
v+W⊆vi+B

ψ(ωv+W ) +
∑

v+W 6⊆vi+B
for any i

ψ(ωv+W )

︸ ︷︷ ︸
X

∈ |B| · (U1)ε + · · ·+ |B| · (Um)ε +X

= |R| |B|
|R|
· ((U1)ε + · · ·+ (Um)ε) +X
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= |R|
(

1

m
+ oR↑Zd(1)

)
((U1)ε + · · ·+ (Um)ε) +X

For big enough R,

⊆ |R|
(
U1

m
+ · · ·+ Um

m

)
ε/2

+X

= |B|Uε/2 +X

Now estimate

|X| =

∣∣∣∣∣∣∣∣
∑

v+W 6⊆vi+B
for any i

ψ(ωv+W )

∣∣∣∣∣∣∣∣
≤ ‖ψ‖∞ · diam(W ) ·

∑
vi+B

|∂(vi +B)|+

∣∣∣∣∣R \⋃
i

(vi +B)

∣∣∣∣∣


= O(1) · (m · |∂B|︸ ︷︷ ︸+oR↑Zd(|R|)),

where this bracketed part will be small relative to m|B| ≤ |R| if B is big enough. So as
R ↑ Zd and then B ↑ Zd, we have

X = O(1)(oR→∞(|R|) + oB→∞(|R|)) = oR→∞,B→∞(|R|).

So if B is big enough given ε and then R is big enough given B, then

ΨR(ω) ∈ |R|Uε/2 + |X| ⊆ |R| · U.

That is, ω ∈ ΩR(ψ,U).

Remark 23.1. ε,B,R did not depend on U1, . . . , Um.

We can therefore restate the proposition as follows:

Corollary 23.1. There exists a function {boxes} → (0,∞) sending B 7→ ε(B) such that if

• ε(B) ↓ 0 as B ↑ Zd,

• For all B, if R is big enough in terms of B and U1, . . . , Um and v1, . . . , vm as before,
then

|ΩR(ψ,U)| ≥
m∏
i=1

|ΩB(ψ, (Ui)ε(B))|.
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Corollary 23.2. There exists a function s : U = {open convex subsets of Rn} → [−∞,∞)
such that for all Bn ↑ Zd and all U ∈ U , we have

1

|Bn|
log |ΩBn(ψ,U2ε(Bn))| = s(U) + o(1),

where

s(U) = lim
n

1

|Bn|
log |ΩBn(ψ,U2ε(Bn))|.

Proof. Let

s(U) := sup
boxes B

1

|B|
log |ΩB(ψ,U2ε(B))|.

We will show that this agrees with the limit. The reason is that lim supn
1
|Bn|(· · · ) ≤

supboxes = s(U), so it is enough to show that lim inf ≥ s(U).
Let Bn ↑ Zd and fix a box B. Once Bn is big enough in terms of B, we can use the

previous corollary to get

|ΩBn(ψ, V )| ≥
m∏
i=1

|ΩB(ψ, (Vi)ε(B))|

for all V ∈ U , where m is the cardinality of a maximal packing of B-translates into Bn.
Hence,

1

|Bn|
log |ΩBn(ψ, V )| ≥ m

|Bn|︸︷︷︸
1/|B|+o(1)

log |ΩB(ψ, Vε(B))|.

Apply this with V = U2ε(Bn). We get

1

|Bn|
log |ΩBn(ψ,U2ε(Bn))| ≥

(
1

|B|
+ o(1)

)
log |ΩB(ψ,U2ε(B)+ε(B))|

≥
(

1

|B|
+ o(1)

)
log |ΩB(ψ,U2ε(B))|

if n is big enough. Let n→∞ to get

lim inf
n

1

|Bn|
log |ΩBn(ψ,U2ε(Bn))| ≥

1

|B|
log |ΩB(ψ,U2ε(B))|.

Take the sup over B and get limn = s(U).
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24 Thermodynamic Limits for Counting Empirical Measures

24.1 Recap + rest of proof of the thermodynamic limit

In our lattice models, we have an alphabet |A| < ∞ of local states. If W ⊆ Zd is finite,
then an observable is a function ψ : AW → Rr. For a box B and ω ∈ AB,

ΨB(ω) =
∑

v+W⊆B
ψ(ωv+W ).

We wanted to measure the size of

ΩB(ψ,U) = {ω ∈ AB : 1
|B|ΨB(ω) ∈ U}.

We were trying to prove the existence of the thermodynamic limit in this situation:

Theorem 24.1. There exists a concave, upper semicontinuous function s : Rr → [−∞,∞)
such that

(a) maxx s(x) = log |A|.

(b) If either U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅, then

|ΩB(ψ,U)| = exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

Last time, we showed that there is a function boxes→ (0,∞) sending B 7→ ε(B) such
that ε(B)→ 0 as B ↑ Zd and

|ΩB(ψ,U2ε(B))| = exp(|B| · s(U) + o(|B|))

for some s(U) ∈ [−∞,∞), where U2ε(B) := {x : B2ε(B)(x) ⊆ U}. We can define

s(x) = inf{s(U) : U 3 x is open, convex}.

This s is automatically upper semicontinuous.
Last time, we showed the estimate that if R is big enough, then

|ΩR(ψ,U2ε(R))| ≥
m∏
i=1

|ΩB(ψ, (Ui)2ε(B))|.
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Here is the rest of the proof of the theorem:

Proof. If 1/2 + O(1/m) of the Uis are U and 1/2 + O(1/m) of them are U ′, then this
inequality gives

|ΩR(ψ, (1
2U + 1

2U
′)2ε(R)+O(1/n))| ≥ |ΩB(ψ,U2ε(B))|m/2+o(1) · |ΩB(ψ,U ′2ε(B))|

m/2+o(1).

Let R ↑ Zd and then B ↑ Zd, so we get

s

(
1

2
U +

1

2
U ′
)
≥ 1

2
(s(U) + s(U ′)).

Next we show that s(U) = supx∈U s(x). As before, this follows if s(U) = sup{s(K) :
K ⊆ U compact, convex}. This works the same as in the non-interacting case because

lim
B↑Zd

1

|B|
log |ΩB(ψ,U2ε(B))| = sup

B

1

|B|
log |ΩB(ψ,U2ε(B))|.

So if c is < this, then there is a box B such that 1
|B| log |ΩB(ψ,U2ε(B))| ≥ c. There exists a

compact set K such that ΩB(ψ,U2ε(B)) = ΩB(ψ,K). Take 1
|B| log | · |, let B ↑ Zd and use

superadditivity to get s(K) ≥ c.
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So s(U) = sup s(K), and so s(U) = supx∈U s(x). Now we have a concave upper
semicontinuous function such that

|ΩB(ψ,U2ε(B))| = exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

for all open convex U . If we remove the ε, certainly

|ΩB(ψ,U)| ≥ exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

But if U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅, then for every ε > 0, there is a δ > 0
such that

sup
x∈Bδ(U)

s(x) < sup
x∈U

s(x) + ε, where Bδ(U) =
⋃
y∈U

Bδ(y).

But then U ⊆ (Bδ(U))2ε(B) for all large enough boxes B, and we have

|ΩB(ψ,U)| ≤ |ΩB(ψ, (BδV )2ε(B)|

= exp

(
|B| · sup

x∈Bδ(U)
s(x) + o(|B|)

)

≤ exp

(
|B| · (sup

x∈U
s(x) + ε) + o(|B|)

)
.

Therefore,

lim sup
B↑Zd

1

|B|
log |ΩB(ψ,U)| ≤ sup

x∈U
s(x) + ε.

Here, ε is arbitrary, so in fact limB↑Zd = supU s(x).
Here is the last detail: Take U = Rr to get

|A||B| = |ΩB(ψ,U)| = e|B|·supx s(x)+o(|B|).

This gives
sup
Rr

s = log |A|.

24.2 The exponent function for measure-valued observables

In the non-interacting case, we described s:

(a) in general via s∗,

(b) explicitly in case ψ is measure-valued.
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We will aim to do the same in this setting.
Let’s try to approach (b). To set this up, fix again a finite window W ⊆ Zd and define

ψ : AW →M(AW ) = RAW sending a 7→ δa. Then we have

ΨB(ω)({a}) =
∑

v+W⊆B
ψ(ωv+W )({a}) = |{v : v +W ⊆ B,ωv+W = a}|.

We now look at 1
|B|ΨB(ω), but it would be cleaner to look at 1

|{v:v+W⊆B}|
∑

v+W⊆B ψ(ωv+W )
so this can be an average. Fortunately, these are asymptotically equivalent, as

|{v : v +W ⊆ B}| = |B|+ o(|B|),

so both averages behave the same asymptotically.

Definition 24.1.

PWω =
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δωv+W ∈ P (AW )

is called the W -empirical measure of ω ∈ AB.

What are the possible limits of empirical measures, and what is the exponent function
s for those? We will answer this as W ↑ Zd (after everything else). Here is the first
observation: Suppose W ⊆ W ′ and π : AW

′ → AW is the projection. Consider ω ∈ AB
and

π∗P
W ′
ω =

1

|{v : v +W ⊆ B}|
∑

v+W ′⊆B
π∗δωv+W ′

=
1

|{v : v +W ⊆ B}|
∑

v+W ′⊆B
δωv+W

= PWω +O

(
|W ′|

min side length(B)

)
,

where the big O term is a bound on the total variation ‖π∗PW
′

ω − PWω ‖.
This is an “approximate compatibility” of empirical measures. This means that we can

look at µ ∈ P (AZd) and a weak*-neighborhood of the form U = {ν : ‖(πW )∗ν− (πW )∗µ‖ <
ε} for some ε > 0 and finite W ⊆ Zd. Then consider

s(U) = lim
B↑Zd

1

|B|
log |{ω ∈ AB : ‖PWω − (πW )∗µ‖ < ε}|.

This lets us define s(U) for any weak* open set U of this form for some W . These are a base

for the weak* topology on P (AZd). This will let us find a concave, upper semicontinuous

exponent function s : P (AZd)→ [−∞,∞).
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25 The Entropy Rate of Shift-Invariant Measures

25.1 Recap

Our alphabet is AZd as before, and we have been moving around finite windows W ⊆ Zd
and looking at what patterns appear. The empirical distribution of x in W is

PWx =
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δv+W (x ∈ AB).

Last time, we saw that if U is an open, convex subset of P (AW ) (or RAW ), then

|{x ∈ AB : PWx ∈ U}|︸ ︷︷ ︸
=:ΩB(W,U)

= e|B|·s(U)+o(|B|),

if U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅. Here, s(U) = sup{s(x) : x ∈ U}. We have
not yet verified that if U ⊆ U1∪· · ·∪Uk, then s(U) ≤ maxi s(Ui), but this is a quick check.

25.2 Counting microscopic configurations by their empirical measures
— consistency of the entropy rate

If W ⊆W ′, B is large, and π : AW
′ → AW is the projection, then

π∗P
W ′
x = PWx +O

(
|W |

min-side-length(B)

)
As a result, inside P (AZd), consider weak* open sets of the form Û := {µ ∈ P (AZd) : µW ∈
U} for some finite W ⊆ Zd and open convex U ⊆ P (AW ), where µ 7→ µW is the projection

of µ to AW . These sets form a base U for the weak* topology on P (AZd).
We would like to try to define

s(Û) := s(U),

where the right hand side is defined using the particular window W . We must show that
this is consistent with respect to the choice of W : We want s(W )(U) = s(W ′)(U ′) whenever
U ⊆ P (AW ) is open and convex and U ′ = {ν ∈ P (AW

′
) : νW ∈ U}. This holds because of

the result proven last time:
If U and U ′ are as above, assume U ∩ {s(W ) > −∞} ∩ ∅ or U ∩ {s(W ) > −∞} = ∅.

This condition implies that

inf
δ>0

s(W )(Bδ(U)) = s(W )(U) = sup
δ>0

s(W )(Uδ).
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Now observe from the aforementioned result that for any δ > 0, if B is large enough,

PWx ∈ U =⇒ (PW
′

x )W = PWx +O

(
|W |

min-side-length(B)

)
.

Hence,
|ΩB(W,U)| ≤ |ΩB(W ′, U ′)|,

and similarly,
|ΩB(W,U)| ≥ |ΩB(W ′, U ′)|.

Now let B ↑ Zd and then δ ↓ 0. Then set s(W ′)(U ′) = s(W )(U). We then obtain

|ΩB(Û)| = exp

(
|B| · sup

µ∈Û
s(µ) + o(|B|)

)
,

as B ↑ Zd. Interpret ΩB(Û) as ΩB(W,U) for any suitable W and U . Note that the
left hand side is not precisely well-defined, but it is asymptotically well-defined by these
considerations, so this statement still makes sense. This exponent function s is a concave,
upper semicontinuous function on M(AZd).

25.3 The entropy rate of shift-invariant measures

Proposition 25.1. Consider the collection of measures

{µ ∈M(AZd) : s(µ) > −∞} = {µ : ∀Bn ↑ Zd, ∃xn ∈ ABn s.t. PWxn → µW ∀W}.

This is contained in

P T (AZd) = {µ ∈ P (AZd) : shift-invariant, i.e. T v∗ µ = µ ∀v ∈ Zd},

where T v : AZd → AZd sends 〈an〉n 7→ 〈an−v〉n and (T v∗ µ)(B) = µ(T−v(B)) for all Borel

B ⊆ AZd.

Proof. Here is the proof of shift invariance: Suppose Bn ↑ Zd and xn ∈ ABn are such that
PWxn → µW for all finite W ⊆ Zd. Pick a window V and a ∈ AV . We will show that
µV (A) = µV−u(a) for all u ∈ Zd.

Pick W ⊇ V ∪ (V − u), and let ψ1, ψ2 : AW → {0, 1} be defined by

ψ1(b) = 1{bV =a}, ψ2(b) = 1{bV−u=a}.

We know µW = limn P
W
xn , and so

µV (a) = (µW )V (a) = lim
n

(PWxn )V (a)
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and
µV−u(a) = lim

n
(PWxn )V−u(a).

These respectively equal:

=
1

|{v : v +W ⊆ Bn}|
|{v : v +W ⊆ Bn, (xn)v+V = a}|,

=
1

|{v : v +W ⊆ Bn}|
|{v : v +W ⊆ Bn, (xn)v+V−u = a}|,

These will agree except for points on the boundary. So the difference is

µV (a)− µV−u(a) = O

(
(|v|+ |u|)|boundary of Bn|

|Bn|

)
n→∞−−−→ 0.

So T V∗ µ = µ.

So {s > −∞} ⊆ P T (AZd). We want to generalize the formula “s(p) = H(p) for
p ∈ P (A)” from the non-interacting case. To do this we need a digression into the properties
of Shannon entropy.

From before, we had that if p ∈ P (A), then

H(p) = −
∑
a∈A

p(a) log p(a).

Here is some notation: If α is an A-valued random variable and if the distribution of α is p:
P(α = a) = p(a), then H(α) = H(p). We interpret this as a measure of the “uncertainty”
in α.

Recall that 0 ≤ H(α) ≤ log |A|, where equality is achieved on the left iff α is determin-
istic (i.e. p = δa for some letter a) and equality on the right is achieved iff α ∼ Unif(A).
Next time, we will discuss some more properties of Shannon entropy and return to s(µ)

for µ ∈ P (AZd).
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26 Basics of Shannon Entropy and Connection to Entropy
Rate

26.1 Basic inequalities for Shannon entropy

Definition 26.1. Let A be a finite set with p ∈ P (A), and let α ∼ p be an A-valued
random variable. Then

H(α) := −
∑
α∈A

P(α = a) logP(α = a)︸ ︷︷ ︸
p(a)

= H(p)

is the Shannon entropy of α (or of p).

The Shannon entropy quantifies how “uncertain” α is. We have seen that H(p) ≥ 0 and
is ≤ log |A|, with equalities achieved with a point mass and with the uniform distribution
on |A|, respectively.

Next consider random variables α, β with values in A,B. Regard (α, β) as a random
variable with values in A×B. The joint distribution is pα,β ∈ P (A×B). Then

H(α, β) = −
∑
a,b

pα,β(a, b) log pα,β(a, b)

= −
∑
a,b

pα,β(a, b) log

(
pα(a) pβ|α(b | a)︸ ︷︷ ︸

P(β=b|α=a)

)

= −
∑
a,b

pα,β(a, b) log pα(a)−
∑
a,b

pα(a)pβ|α(b | a) log pβ|α(b | a)

= −
∑
a

pα(a) log pα(a) +
∑
a

pα(a) ·H(pβ|α(· | a))

= H(α) +H(β | α),

where H(β | α) :=
∑

a pα(a) ·H(pβ|α(· | a)).
Here is the generalization of this fact:

Theorem 26.1 (Chain rule).

H(α1, . . . , αm) = H(α1) +H(α2 | α1) +H(α3 | α1, α2) + · · ·+H(αm | α1, . . . , αm−1).

We also have the following property.

Lemma 26.1.
H(β | α) ≤ H(β),

and equality holds iff α, β are independent, in which case

H(α, β) ≤ H(α) +H(β)
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Proof.

H(β | α) =
∑
a

pα(a)H(pβ|α(· | a)).

By the Law of Total Probability, for all b ∈ B,

pβ(b) =
∑
α

pα(a)pβ|α(b | a).

Since H is strictly concave, Jensen’s inequality gives that

H(β) = H(pβ) ≥
∑
α

pα(a)H(pβ|α(· | a)) = H(β | α).

Equality holds in Jensen’s inequality iff pβ|α(· | a) = pβ whenever pα(a) > 0, i.e. α, β are
independent.

Corollary 26.1.
H(γ | α, β) ≤ H(γ | β)

and similarly with more random variables. Equality holds iff α, γ are conditionally inde-
pendent given β.

Here is a corollary of the chain rule:

Corollary 26.2. Let A be a finite set, p ∈ P (A), and 0 ≤ ε < 1/2. Suppose A = B t C
with |B| ≤ |C| and p(C) ≤ ε. Then

H(p) ≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |C|.

Proof. Let α ∼ p, and let

β = 1B(α) =

{
1 α ∈ B
0 α ∈ C.

So H(α) = H(α) +H(β | α) = H(α, β). Expanding via β first instead, we get

H(α) = H(α, β)

= H(β) +H(α | β)

= H(β) + P(β = 1)H(p(· | B)) + P(β = 0)H(p(· | C))

≤ H(ε, 1− ε) + p(B) · log |B|+ p(C) · log |C|
≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |C|.

Here is the last information-theoretic inequality we need.
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Theorem 26.2 (Shearer’s inequality). Let α1, . . . , αm be valued in A1, . . . , Am, let S ⊆
P({1, . . . ,m}), and let k ≥ 1. Assume that every i ∈ {1, . . . ,m} is contained in ≥ k
members of S. Then

H(α1, . . . , αm) ≤ 1

k

∑
S∈S

H(αi : i ∈ S).

Proof. Here is the proof in the case m = 3 and S = {{1, 2}, {1, 3}, {2, 3}} (k = 2); the
argument generalizes well.

H(α1, α2) = H(α1) +H(α2 | α1)

H(α1, α3) = H(α1) + +H(α3 | α1)

H(α2, α3) = H(α2) +H(α3 | α2)

Adding together the columns, the first column is H(α1), the second column is ≥ 2H(α2 |
α1), and the third column is ≥ 2H(α3 | α1, α2). So we get

H(α1, α2) +H(α1, α3) +H(α2, α3) = 2[H(α1) +H(α2 | α1) +H(α3 | α1, α2)]

= 2H(α1, α2, α3).

26.2 Applying Shearer’s inequality to lattice models

Here is a corollary of Shearer’s inequality.

Corollary 26.3. Let W,B ⊆ Zd be finite with 0 < |A| <∞ and µ ∈ P (AB). Then

H(µ) ≤ 1

|W |
∑

v+W⊆B
H(µv+W ) +O

(
log |A| · |B| · diam(W )

min-side-length(B)

)
.

Proof. Let S0 = {v+W : v+W ⊆ B}, and define S1 = {(v+W )∩B : (v+W )∩B 6= ∅}.
Then S0 ⊆ S1, and S1 covers every element of B exactly |W |-many times. Apply Shearer’s
inequality to get

H(µ) ≤ 1

|W |
∑

(v+W )∩B∈S1

H(µ(v+W )∩B) =
1

|W |
∑
S0

H(µv+W ) + error.

The number of terms put into the error is |S1 \ S0| = O( diam(W )·|B|
min-side-length(B)). Each of these

terms is ≤ log |AW | = |W | · log |A|.

Now return to shift-invariant measures µ ∈ P T (AZd).

Lemma 26.2. The limit limB↑Zd
1
|B|H(µB) exists, and

lim
B↑Zd

1

|B|
H(µB) = inf

B

1

|B|
H(µβ).
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Here is a proof using Shearer’s inequality:

Proof. Apply the previous corollary to a shift-invariant measure µ, and observe µv+W = µW
(up to fixing indexing). Then

1

|B|
H(µB) ≤ 1

|B|
∑

v+W⊆B

1

|W |
H(µW ) + o(1)

=
|{v : v +W ⊆ B}|

|B|
· 1

|W |
H(µW ) + o(1)

≤ 1

|W |
H(µW ) + o(1).

So in fact,

lim
B↑Zd

1

|B|
H(µβ) = inf

|W |<∞

1

|W |
H(µW ).

Definition 26.2. The quantity

h(µ) = lim
B↑Zd

1

|B|
H(µB) (µ ∈ P T (AZd))

is called the entropy rate of µ.

The entropy rate satisfies
0 ≤ h(µ) ≤ H(µ{0}).

Theorem 26.3. s = h on P T (AZd), and so {s > −∞} = {s ≥ 0} = P T (AZd).
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27 Equality of Entropy Rate and the Exponent Function

27.1 Proving that the entropy rate equals the exponent function for
lattice models

In our current setting, we have a shift-invariant measure µ ∈ P T (AZd), and

s(µ) = inf
W,U3µW

lim
B↑Zd

1

|B|
log |ΩB(U)|,

where ΩB(U) = {x ∈ AB : PWx ∈ U}.
The Shannon entropy is

H(µF ) = −
∑
y∈AF

µF (y) logµF (y),

and the entropy rate is

h(µ) = lim
B

1

|B|
H(µB) = inf

W

1

|W |
H(µW )

Theorem 27.1.
s(µ) = h(µ).

To prove this, we will use two tools from last lecture:

Lemma 27.1. If A = B t C, p ∈ P (A), and p(C) ≤ ε ≤ 1/2, then

H(p) ≤ H(ε, 1− ε) + (1− ε) log |B|+ ε log |A|.

Last time, we assumed |B| ≤ |C| in the above and got log |C| instead of log |A|; this
version is more useful. We also have the following corollary of Shearer’s inequality:

Lemma 27.2. If W,B ⊆ Zd are finite and µ ∈ P (AB), then

H(µ) ≤ 1

|W |
∑

v:v+W⊆B
H(µv+W ) +O

(
log |A| · |B| · diam(W )

min-side-length(B)

)
.

Now let’s prove the theorem:

Proof. We will prove the inequalities ≥ and ≤ separately.
(≥): Denote h = h(µ). We want to show for any W , µW , we have

1

|B|
log |{x ∈ AB : PWx ∈ U}| ≥ h− o(1)
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as B ↑ Zd. Suppose we knew that

µB({x ∈ AB : PWx ∈ U}) = 1− o(1)

as B ↑ Zd. Then, by the first lemma, we get

1

|B|
H(µB) ≤ 1

|B|
H(ε(B), 1− ε(B)) +

1− ε(B)

|B|
log |ΩB(W,U)|+ ε(B)

|B|
log |AB|

≤ log 2

|B|
+

1

|B|
log |ΩB(W,U)|+ ε(B) log |A|

=
1

|B|
log |ΩB(W,U)|+ o(1)

as B ↑ Zd. So s(µ) ≥ h(µ) if we have this property.
In general, this property does not hold, so we need a replacement for it. To do this,

we may restrict attention to Bn = {0, . . . , n2 − 1}d. Let Qn be the natural partition of Bn
into boxed of side length n.

Let νn =×Q∈Qn µQ. Observe that H(νn) =
∑

W H(µQ), so

1

n2d
H(νn) =

1

nd
H(µ{0,...,n−1}d)→ h(µ)

as n→∞. Also, if x ∈ ABn ,

PWx =
1

|{v : v +W ⊆ Bn}|
∑

v+W⊆Bn

δxv+W

=
1

|{v : v +W ⊆ Bn}|
∑
Q∈Qn

∑
v+W⊆Q

δxv+W + boundary terms
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If we do the same analysis as we did before with this type of partition, we get

=
1

nd

∑
Q∈Qn

PWxQ + o(1).

The PWxQ are independent if x ∼ νn. The average of PWxQ(a) (with a ∈ AW ) over xQ ∼ µW

is µW (a). So by the weak law of large numbers, PWx ∈ U with high probability if x ∼ νn
and n is large enough. So the property we assumed works if we replace µB by νn. Now
complete the argument as before.

(≤): We want to show that if ε > 0, W is large enough, and U 3 µW is small enough,
then

1

|B|
log |ΩB(W,U)| ≤ h+ ε+ o(1)

as B ↑ Zd. To estimate the left hand side, let νB be the uniform probability distribution on
ΩB(W,U), so the left hand side equals 1

|B| . So the second lemma (the corollary of Shearer’s

inequality) tells us that

1

|B|
H(νB) ≤ 1

|B|
∑

v+v+W⊆B
H(νv+W ) +O

(
log |A| · diam(W )

min-side-length(B)

)
︸ ︷︷ ︸

=oB(1)

.

What can we say about the family νv+W , where v +W ⊆ B? Observe that

1

|{v : v +W ⊆ B}|
∑

v+W⊆B
νv+W =

1

|{v : v +W ⊆ B}|
∑

v+W⊆B

∫
δxv+W dνB(x)

=

∫
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δxv+W dνB(x)

=

∫
PWx dνB(x)

=: µ̂ ∈ U.

Since Shannon entropy is concave and continuous, we get

1

|{v : v +W ⊆ B}|
∑

v+W⊆B
H(νv+W ) ≤ H(µ̂) ≤ H(µW ) + ε

if we choose U small enough.
If we put it all together, we get

1

|B|
log |ΩB(W,U)| = 1

|B|
H(νB) ≤ (1 + oB(1))

1

|W |
(H(µW ) + ε) + oB(1).
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So for every ε and W , there is a U such that

lim
B

1

|B|
log |ΩB(W,U)| ≤ 1

|W |
H(µW ) + ε.

So, if we choose W large enough depending on ε, we get that the left hand side is ≤ h+2ε,
Since ε is arbitrary, we get s(µ) ≤ h(µ).

27.2 A digression concerning ergodic measures

If µ ∈ P T (AZd), B is a large box, and x ∈ AZd , then

PWx =
1 + o(1)

|B|
∑

v+W⊆B
δxv+W

= (1 + o(1)) · 1

|B|
∑
v∈B

δxv+W .

When do we have PWxB → µW in weak* as B ↑ Zd when x ∼ µ? Equivalently, we test

against ψ : AZd → R dependent only on coordinates in W : When do we have

µ

({
x ∈ AZd :

∣∣∣∣∣ 1

|B|
∑
v∈B

ψ(xv+W )−
∫
ψ dµ

∣∣∣∣∣ < ε

})
→ 1

as B ↑ Zd? Write 1
|B|
∑

v∈B ψ(xv+W ) = 1
|B|
∑

v∈B ψ(T vx). Then we really want

1

|B|
∑
v∈B

ψ ◦ T v →
∫
ψ dµ

in probability for all ψ.

Theorem 27.2 (Mean Ergodic Theorem). Let (X,µ) be a probability space (e.g. above

X = AZd). Let (Tn)n∈Zd be an action on X that preserves µ (e.g. above this equals
translation). The following are equivalent:

1. For all ψ ∈ L1(µ), we have

1

|B|
∑
v∈B

ψ ◦ T v →
∫
ψ dµ

in L1 as B ↑ Zd.

2. The system (X,µ, T ) is ergodic: there is no measurable partition X = Y t Z such
that T v(Y ) = Y and T v(Z) = Z for all v and µ(Y ), µ(Z) > 0.
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28 Variational Principles for the Entropy Rate

28.1 Recap

Last time, we showed that

s(µ) := inf
W,U3µ

lim
B↑Zd

1

|B|
log |{x ∈ AB : PWx ∈ U}|

=

{
h(µ) := limB

1
|B|H(µB) if µ ∈ P T

−∞ otherwise.

Here, we extend h by h(µ) = −∞ if µ /∈ P T . Then h : M(AZd)→ [−∞, log |A|] is concave
and upper semicontinuous, and the set {h > −∞} = {h ≥ 0} = P T . The upper bound

log |A| is achieved when µ = Unif×Z
d

A .
Now, we will see two variational principles.

28.2 The first variational principle

Theorem 28.1. Let ψ : AZd → Rr depend only on coordinates in a finite W ⊆ Zd. For
x ∈ Rr, let

s(ψ, y) = inf
V 3x

lim
B↑Zd

1

|B|
log |{x ∈ AB : 1

|B|ΨB(x) ∈ V }|,

where the inf is over open, convex neighborhoods of x in Rr. Then

s(ψ, y) = sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 = y}
= sup{h(µ) : µ ∈ P, 〈ψ, µ〉 = y}.

with the convention that sup∅ = −∞.

Proof.

1

|B|
ΨB(x) =

1

|B|
∑

v+W⊆B
ψ(T vx)

=
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
ψ(T vx) + o(|B|)

= 〈ψ, PWx 〉+ o(|B|),

This gives (≥): For any V ⊆ Rr and finite W ⊆ Zd, we have

1

|B|
log |{x ∈ AB : 〈ψ, PWx 〉 ∈ V }|.
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The condition 〈ψ, PWx 〉 ∈ V defines any convex neighborhood of any µ such that 〈ψ, µ〉 = y.
So taking limB of the above, we get that it is ≥ h(µ) for any such µ.

Now consider (≤). Let

h = sup{h(µ) : µ ∈ P, 〈ψ, µ〉 = y}.

The set {µ ∈ P : 〈ψ, µ〉 = y} is compact, so there exists a window W and open convex sets
U1, . . . , Ur in P (AW ) such that {µ ∈ P : 〈ψ, µ〉 = y} ⊆

⋃
i{µ ∈ P : µW ∈ Ui} and

1

|B|
log |{x : PWx ∈ Ui}| ≤ (h+ ε) + o(1)

for all i. Finally, by compactness again, if V ⊆ Rr is a small enough neighborhood of y,
then ⋃

i

{µ ∈ P : µW ∈ Ui} ⊇ {µ : 〈ψ, µ〉 ∈ V }

So
1

|B|
log |{x : 〈ψ, PWx 〉 ∈ V }| ≤ max

i

1

|B|
log |{x : PWx ∈ Ui}|+

log s

|B|
≤ h+ ε

as B ↑ Zd. Since ε > 0 is arbitrary, we get s(ψ, y) = h, as desired.

Corollary 28.1. For any convex, open V ⊆ Rr,

s(ψ, V ) = lim
B

1

|B|
log |{x : 〈ψ, PWx 〉 ∈ V }|

= sup
y∈V

s(ψ, y)

= sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 ∈ V }
= sup{h(µ) : µ ∈ P, 〈ψ, µ〉 ∈ V }.

From this, we can return to interactions giving the total potential energy ϕ = (ϕF )F ,
assumed (for simplicity) to be a finite range interaction. Look at

|{x ∈ AB : 1
|B|Φ(x) ∈ I},

where I is a small open interval, and ΦB(x) =
∑

F⊆B ϕF (xF ) =
∑

F ′ |B|〈ϕF ′ , PWx 〉+o(|B|).
Here, W is a big enough window to see all nonzero translates, and F ′ runs over one copy
of each finite set ⊆W up to translation. So this set is∣∣∣∣∣

{
x ∈ AB :

∑
F ′

〈ϕF ′ , PWx 〉 ∈ I

}∣∣∣∣∣ .
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∑
F ′〈ϕF ′ , PWx 〉 ∈ I is an open, convex condition in Rr, so

1

|B|
log

∣∣∣∣∣
{
x ∈ AB :

∑
F ′

〈ϕF ′ , PWx 〉 ∈ I

}∣∣∣∣∣ B↑Zd−−−→ sup

{
h(µ) : µ ∈ P T ,

∑
F ′

〈ϕF ′ , µ〉 ∈ I ≈ y

}
.

We can use this result to predict the most likely values of any other observable if there
is a unique measure µ that maximizes h(µ) subject to the constraint

∑
F ′〈ϕF ′ , µ〉 = y.

Remark 28.1. There always exists a µ achieving the supremum if the set {µ :
∑

F ′〈ϕF ′ , µ〉 =
y} 6= ∅ by upper semicontinuity of h on the above weak* compact set.

So the key question is when we get uniqueness of that maximizer. We will discuss this
next time.

28.3 A variational principle for the Fenchel-Legendre transform of h

To understand the second variational principle, we need to extend the first version from
ϕ : AZd → Rr to any ψ ∈ C(AZd). To apply ψ “inside a box,” given x ∈ AB, let x̂ be any

element of AZd such that x̂B = x. Given B and ψ ∈ C(AZd), let

sBψ(x) =
∑
v∈B

ψ(T vx̂).

Lemma 28.1. If x̂, x̌ are two choices of extension, then∣∣∣∣∣∑
v∈B

ψ(T vx̂)−
∑
v∈B

ψ(T vx̌)

∣∣∣∣∣ = o(|B|).

Now a fiddly extension of the first variational principle gives

1

|B|
log |{x ∈ AB : 1

|B|sBψ(x) ∈ V }| = sup{h(µ) : µ ∈ P T , 〈ψ, µ〉 ∈ V }.

This version is good because we can now handle the whole Banach space C(AZd), which is

the dual of M(AZd), equipped with the weak* topology. This leads to a description of the
Fenchel-Lengendre transform of h:

Theorem 28.2 (2nd variational principle). On C(AZd),

h∗(f) := sup{h(µ)− 〈f, µ〉 : µ ∈M(AZd)}

= lim
B↑Zd

1

|B|
log

∑
x∈AB

e−sBf(x).

The e−sBf(x) are the Gibbs weights that define the canonical distribution on AB. In
ergodic theory and much of mathematical physics, this limit is called the pressure of f
(denoted p(f)). Caution: this is not always the physical pressure of the system.
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29 Equilibrium Measures, the D-L-R Equations, and Unique-
ness vs Non-uniqueness

29.1 Second variational principle and equilibrium measures

Here is the main variational principle we proved last time: For f ∈ C(AZd), let

p(f) := lim
B↑Zd

1

|B|
log

∑
x∈AB

exp(−sBf(x)),

where
sBf(x) =

∑
v∈B

f(T vx̂),

and x̂ is an extension of x to an element of AZd . Then

p(f) = sup{h(µ)− 〈f, µ〉 : µ ∈ P T (AZd)} = h∗(f).

Here, p is called the pressure of f .19 (Recall that h : M(AZd)→ [−∞, log |A|] is concave
and upper semicontinuous.

Proof. Here is a sketch: Note that

sBf(x) =
∑
v∈B

f(T vx̂)

= |B| 1

|B|
∑
v∈B

f(T vx̂)

= |B|〈f, 1

|B|
∑
v∈B

δT vx̂︸ ︷︷ ︸
=:PBx

〉,

. where PBx = PWx + oB↑Zd(1). So in the limit, it is enough to prove the formula for∑
x∈AB

exp(−|B|〈f, PBx 〉)

Proof of (≥): Fix µ ∈ P T , fix ε > 0, and let U = {ν ∈ P T : 〈f, ν〉 < 〈f, µ〉 + ε}. This
is a weak* open, concave neighborhood of µ. Now∑
x∈AB

exp(· · · ) ≥
∑

x:PBx ∈U

exp(−|B|〈f, PBx 〉)

19This is not always the same thing as pressure in physics. Sometimes, physicists will call this the
Massieu function.
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≥
∑

x:PBx ∈U

exp(−|B|(〈f, µ〉+ ε))

≥ |ΩB|︸︷︷︸
≥exp(|B|h(µ)+o(|B|))

exp(−|B|〈f, µ〉 − ε|B|).

So we get
1

|B|
log(· · · ) ≥ h∗(µ)− 〈f, µ〉 − ε− o(1).

Since ε is arbitrary, we get (≥).
Proof of (≤): Let ε > 0, and pick a finite cover P ⊆ U1 ∪ · · · ∪ Ur such that

sup
µ∈Ui

h(µ) + sup
µ∈Ui

(−〈f, µ〉) ≤ h+ ε,

where h is the desired right hand side. Now∑
x

exp(−sBf(x)) ≤
n∑
i=1

∑
x:PBx ∈Ui

exp(−sBf(x))

≤
r∑
i=1

exp(s(Ui) · |B|+ o(|B|) + sup
µ∈Ui

(−〈f, µi〉) + ε

≤
r∑
i=1

exp

(
sup
µ∈Ui

(h(µ)− 〈f, µ〉) + 2ε|B|
)

≤ r ·max
i

(· · · ).

Apply this to 1
|B| log(· · · ) to get that this is ≤ RHS + 2ε+ o(1).

We have a max, rather than a sup:

p(f) = max{h(µ)− 〈f, µ〉 : µ ∈ P T }.

Definition 29.1. µ ∈ P T is an equilibrium measure for f if h(µ)− 〈f, µ〉 = p(f).

Observe that ∑
x∈AB

exp(−|B| · 〈f, PBx 〉) = exp(p(f) · |B|+ o(|B|)).

Given µ ∈ P T and a small enough neighborhood U , we have∑
x:PBx ∈U

exp(−|B|〈f, PBx 〉) exp ((h(µ)− 〈f, µ〉 ± ε)|B|+ o(|B|))

Microscopic states will look very similar to equilibrium measures. Equilibrium measures
measures always exist. If an equilibrium measure is unique, then we can integrate against
it to predict values of any other observable. If there are multiple equilibrium measures,
they describe a system with several possible phases of a given temperature.
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29.2 The D-L-R equations and uniqueness vs non-uniqueness

The next stage in the story is how to characterize equilibrium measures. For simplicity, we
will study a finite-range interaction ϕ = ϕF for some fixed finite F ⊆ Zd. Consider C ⊆ B:

Look at

ΦB(x) =
∑

v∈F⊆B
ϕ(xv+F )

=
∑

v+F⊆C
ϕ(xv+F ) +

∑
v+F⊆B\C

ϕ(xv+F ) +
∑

v+F⊆B
(v+F )∩C 6=∅

(v+F )∩(B\C) 6=∅

ϕ(xv+F )

= ΦC(x) + ΦB\C(x) + Φint
B,C(x).

The canonical distribution on AB is

dγ(x) =
1

Z
exp(−ΦB(x))

=
1

Z
exp(−ΦC − ΦB\C − Φint

B,C).

Use this to write

γ(xC = y | xB\C = z) =
exp(−ΦC(y)−���

��ΦB\C(x)− Φint(y, z))∑
y′∈AC exp(−Φc(y′)−���

��ΦB\C(z)− Φint(y′, z)

This depends on z on through z∂FC , where ∂FC = [
⋃

(v+F )∩C 6=∅(v + F )] \ C. So we can

define a family of conditional measures for y ∈ Ac and z ∈ AZd\C :

γC,z(dy) =
exp(−ΦC(y)− Φint(y, z∂FC))∑

y′∈AC exp(−ΦC(y′)− Φint(y′, z∂FC))
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Definition 29.2. The family γC,z for finite C ⊆ Zd and z ∈ AZd\C is called the specifi-
cation associated to ϕ.

The specification describes the conditional behavior inside C under a canonical dis-
tribution. A µ ∈ P (AZd) satisfies the D-L-R equations with respect to ϕ if for all finite
C ⊆ Zd, we have

µ(xC = y | xZd\C = z) = γC,z(y)

for all C, z. Equivalently, for all f ∈ C(AZd), we have∫
f dµ =

∫∫
f(y, xZd\C)γC,xZd\C (dz) dµ(x).

Theorem 29.1. µ is an equilibrium measure for ϕ if and only if µ ∈ P T and satisfies all
D-L-R equations.

This is much easier to analyze. This is the gateway to theorems such as the following:

Theorem 29.2. For any local interaction ϕ, βϕ has a unique equilibrium state for all
sufficiently small β. That is, there is a critical β > 0 such that for all β < βc, T > Tc.

The above is a corollary of Dobrushin’s uniqueness theorem. In general, things are
easier at high temperatures because of techniques like that theorem.

On the other hand, if A = {−1, 1}, F = {0, c1, c2, . . . , cd}, then

ϕ(x0, xe1 , . . . , xed) = −
d∑
i=1

x0xei .

This is the basis for what is called the Ising model.

Theorem 29.3 (Peierls). If β is high enough and d ≥ 2, then βϕ has multiple equilibrium
states.
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